Rfc | 5794 |
Title | A Description of the ARIA Encryption Algorithm |
Author | J. Lee, J. Lee, J.
Kim, D. Kwon, C. Kim |
Date | March 2010 |
Format: | TXT, HTML |
Status: | INFORMATIONAL |
|
Independent Submission J. Lee
Request for Comments: 5794 J. Lee
Category: Informational J. Kim
ISSN: 2070-1721 D. Kwon
C. Kim
NSRI
March 2010
A Description of the ARIA Encryption Algorithm
Abstract
This document describes the ARIA encryption algorithm. ARIA is a
128-bit block cipher with 128-, 192-, and 256-bit keys. The
algorithm consists of a key scheduling part and data randomizing
part.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc5794.
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
1. Introduction
1.1. ARIA Overview
ARIA is a general-purpose block cipher algorithm developed by Korean
cryptographers in 2003. It is an iterated block cipher with 128-,
192-, and 256-bit keys and encrypts 128-bit blocks in 12, 14, and 16
rounds, depending on the key size. It is secure and suitable for
most software and hardware implementations on 32-bit and 8-bit
processors. It was established as a Korean standard block cipher
algorithm in 2004 [ARIAKS] and has been widely used in Korea,
especially for government-to-public services. It was included in
PKCS #11 in 2007 [ARIAPKCS].
2. Algorithm Description
The algorithm consists of a key scheduling part and data randomizing
part.
2.1. Notations
The following notations are used in this document to describe the
algorithm.
^ bitwise XOR operation
<<< left circular rotation
>>> right circular rotation
|| concatenation of bit strings
0x hexadecimal representation
2.2. Key Scheduling Part
Let K denote a master key of 128, 192, or 256 bits. Given the master
key K, we first define 128-bit values KL and KR as follows.
KL || KR = K || 0 ... 0,
where the number of zeros is 128, 64, or 0, depending on the size of
K. That is, KL is set to the leftmost 128 bits of K and KR is set to
the remaining bits of K (if any), right-padded with zeros to a
128-bit value. Then, we define four 128-bit values (W0, W1, W2, and
W3) as the intermediate round values appearing in the encryption of
KL || KR by a 3-round, 256-bit Feistel cipher.
W0 = KL,
W1 = FO(W0, CK1) ^ KR,
W2 = FE(W1, CK2) ^ W0,
W3 = FO(W2, CK3) ^ W1.
Here, FO and FE, respectively called odd and even round functions,
are defined in Section 2.4.1. CK1, CK2, and CK3 are 128-bit
constants, taking one of the following values.
C1 = 0x517cc1b727220a94fe13abe8fa9a6ee0
C2 = 0x6db14acc9e21c820ff28b1d5ef5de2b0
C3 = 0xdb92371d2126e9700324977504e8c90e
These values are obtained from the first 128*3 bits of the fractional
part of 1/PI, where PI is the circle ratio. Now the constants CK1,
CK2, and CK3 are defined by the following table.
Key size CK1 CK2 CK3
128 C1 C2 C3
192 C2 C3 C1
256 C3 C1 C2
For example, if the key size is 192 bits, CK1 = C2, CK2 = C3, and
CK3 = C1.
Once W0, W1, W2, and W3 are determined, we compute encryption round
keys ek1, ..., ek17 as follows.
ek1 = W0 ^(W1 >>> 19),
ek2 = W1 ^(W2 >>> 19),
ek3 = W2 ^(W3 >>> 19),
ek4 = (W0 >>> 19) ^ W3,
ek5 = W0 ^ (W1 >>> 31),
ek6 = W1 ^ (W2 >>> 31),
ek7 = W2 ^ (W3 >>> 31),
ek8 = (W0 >>> 31) ^ W3,
ek9 = W0 ^ (W1 <<< 61),
ek10 = W1 ^ (W2 <<< 61),
ek11 = W2 ^ (W3 <<< 61),
ek12 = (W0 <<< 61) ^ W3,
ek13 = W0 ^ (W1 <<< 31),
ek14 = W1 ^ (W2 <<< 31),
ek15 = W2 ^ (W3 <<< 31),
ek16 = (W0 <<< 31) ^ W3,
ek17 = W0 ^ (W1 <<< 19).
The number of rounds depends on the size of the master key as
follows.
Key size Number of Rounds
128 12
192 14
256 16
Due to an extra key addition layer in the last round, 12-, 14-, and
16-round algorithms require 13, 15, and 17 round keys, respectively.
Decryption round keys are derived from the encryption round keys.
dk1 = ek{n+1},
dk2 = A(ek{n}),
dk3 = A(ek{n-1}),
...,
dk{n}= A(ek2),
dk{n+1}= ek1.
Here, A and n denote the diffusion layer of ARIA and the number of
rounds, respectively. The diffusion layer A is defined in Section
2.4.3.
2.3. Data Randomizing Part
The data randomizing part of the ARIA algorithm consists of the
encryption and decryption processes. The encryption and decryption
processes use functions FO, FE, A, SL1, and SL2. These functions are
defined in Section 2.4.
2.3.1. Encryption Process
2.3.1.1. Encryption for 128-Bit Keys
Let P be a 128-bit plaintext and K be a 128-bit master key. Let ek1,
..., ek13 be the encryption round keys defined by K. Then the
ciphertext C is computed by the following algorithm.
P1 = FO(P , ek1 ); // Round 1
P2 = FE(P1 , ek2 ); // Round 2
P3 = FO(P2 , ek3 ); // Round 3
P4 = FE(P3 , ek4 ); // Round 4
P5 = FO(P4 , ek5 ); // Round 5
P6 = FE(P5 , ek6 ); // Round 6
P7 = FO(P6 , ek7 ); // Round 7
P8 = FE(P7 , ek8 ); // Round 8
P9 = FO(P8 , ek9 ); // Round 9
P10 = FE(P9 , ek10); // Round 10
P11 = FO(P10, ek11); // Round 11
C = SL2(P11 ^ ek12) ^ ek13; // Round 12
2.3.1.2. Encryption for 192-Bit Keys
Let P be a 128-bit plaintext and K be a 192-bit master key. Let ek1,
..., ek15 be the encryption round keys defined by K. Then the
ciphertext C is computed by the following algorithm.
P1 = FO(P , ek1 ); // Round 1
P2 = FE(P1 , ek2 ); // Round 2
P3 = FO(P2 , ek3 ); // Round 3
P4 = FE(P3 , ek4 ); // Round 4
P5 = FO(P4 , ek5 ); // Round 5
P6 = FE(P5 , ek6 ); // Round 6
P7 = FO(P6 , ek7 ); // Round 7
P8 = FE(P7 , ek8 ); // Round 8
P9 = FO(P8 , ek9 ); // Round 9
P10 = FE(P9 , ek10); // Round 10
P11 = FO(P10, ek11); // Round 11
P12 = FE(P11, ek12); // Round 12
P13 = FO(P12, ek13); // Round 13
C = SL2(P13 ^ ek14) ^ ek15; // Round 14
2.3.1.3. Encryption for 256-Bit Keys
Let P be a 128-bit plaintext and K be a 256-bit master key. Let ek1,
..., ek17 be the encryption round keys defined by K. Then the
ciphertext C is computed by the following algorithm.
P1 = FO(P , ek1 ); // Round 1
P2 = FE(P1 , ek2 ); // Round 2
P3 = FO(P2 , ek3 ); // Round 3
P4 = FE(P3 , ek4 ); // Round 4
P5 = FO(P4 , ek5 ); // Round 5
P6 = FE(P5 , ek6 ); // Round 6
P7 = FO(P6 , ek7 ); // Round 7
P8 = FE(P7 , ek8 ); // Round 8
P9 = FO(P8 , ek9 ); // Round 9
P10= FE(P9 , ek10); // Round 10
P11= FO(P10, ek11); // Round 11
P12= FE(P11, ek12); // Round 12
P13= FO(P12, ek13); // Round 13
P14= FE(P13, ek14); // Round 14
P15= FO(P14, ek15); // Round 15
C = SL2(P15 ^ ek16) ^ ek17; // Round 16
2.3.2. Decryption Process
The decryption process of ARIA is the same as the encryption process
except that encryption round keys are replaced by decryption round
keys. For example, encryption round keys ek1, ..., ek13 of the
12-round ARIA algorithm are replaced by decryption round keys dk1,
..., dk13, respectively.
2.4. Components of ARIA
2.4.1. Round Functions
There are two types of round functions for ARIA. One is called an
odd round function and is denoted by FO. It takes as input a pair
(D,RK) of two 128-bit strings and outputs
FO(D,RK) = A(SL1(D ^ RK)).
The other is called an even round function and is denoted by FE. It
takes as input a pair (D,RK) of two 128-bit strings and outputs
FE(D,RK) = A(SL2(D ^ RK)).
Functions SL1 and SL2, called substitution layers, are described in
Section 2.4.2. Function A, called a diffusion layer, is described in
Section 2.4.3.
2.4.2. Substitution Layers
ARIA has two types of substitution layers that alternate between
rounds. Type 1 is used in the odd rounds, and type 2 is used in the
even rounds.
Type 1 substitution layer SL1 is an algorithm that takes a 16-byte
string x0 || x1 ||...|| x15 as input and outputs a 16-byte string
y0 || y1 ||...|| y15 as follows.
y0 = SB1(x0), y1 = SB2(x1), y2 = SB3(x2), y3 = SB4(x3),
y4 = SB1(x4), y5 = SB2(x5), y6 = SB3(x6), y7 = SB4(x7),
y8 = SB1(x8), y9 = SB2(x9), y10= SB3(x10), y11= SB4(x11),
y12= SB1(x12), y13= SB2(x13), y14= SB3(x14), y15= SB4(x15).
Type 2 substitution layer SL2 is an algorithm that takes a 16-byte
string x0 || x1 ||...|| x15 as input and outputs a 16-byte string
y0 || y1 ||...|| y15 as follows.
y0 = SB3(x0), y1 = SB4(x1), y2 = SB1(x2), y3 = SB2(x3),
y4 = SB3(x4), y5 = SB4(x5), y6 = SB1(x6), y7 = SB2(x7),
y8 = SB3(x8), y9 = SB4(x9), y10= SB1(x10), y11= SB2(x11),
y12= SB3(x12), y13= SB4(x13), y14= SB1(x14), y15= SB2(x15).
Here, SB1, SB2, SB3, and SB4 are S-boxes that take an 8-bit string as
input and output an 8-bit string. These S-boxes are defined by the
following look-up tables.
SB1:
0 1 2 3 4 5 6 7 8 9 a b c d e f
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
SB2:
0 1 2 3 4 5 6 7 8 9 a b c d e f
00 e2 4e 54 fc 94 c2 4a cc 62 0d 6a 46 3c 4d 8b d1
10 5e fa 64 cb b4 97 be 2b bc 77 2e 03 d3 19 59 c1
20 1d 06 41 6b 55 f0 99 69 ea 9c 18 ae 63 df e7 bb
30 00 73 66 fb 96 4c 85 e4 3a 09 45 aa 0f ee 10 eb
40 2d 7f f4 29 ac cf ad 91 8d 78 c8 95 f9 2f ce cd
50 08 7a 88 38 5c 83 2a 28 47 db b8 c7 93 a4 12 53
60 ff 87 0e 31 36 21 58 48 01 8e 37 74 32 ca e9 b1
70 b7 ab 0c d7 c4 56 42 26 07 98 60 d9 b6 b9 11 40
80 ec 20 8c bd a0 c9 84 04 49 23 f1 4f 50 1f 13 dc
90 d8 c0 9e 57 e3 c3 7b 65 3b 02 8f 3e e8 25 92 e5
a0 15 dd fd 17 a9 bf d4 9a 7e c5 39 67 fe 76 9d 43
b0 a7 e1 d0 f5 68 f2 1b 34 70 05 a3 8a d5 79 86 a8
c0 30 c6 51 4b 1e a6 27 f6 35 d2 6e 24 16 82 5f da
d0 e6 75 a2 ef 2c b2 1c 9f 5d 6f 80 0a 72 44 9b 6c
e0 90 0b 5b 33 7d 5a 52 f3 61 a1 f7 b0 d6 3f 7c 6d
f0 ed 14 e0 a5 3d 22 b3 f8 89 de 71 1a af ba b5 81
SB3:
0 1 2 3 4 5 6 7 8 9 a b c d e f
00 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
10 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
20 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
30 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
40 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
50 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
60 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
70 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
80 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
90 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a0 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b0 fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c0 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d0 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e0 a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f0 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d
SB4:
0 1 2 3 4 5 6 7 8 9 a b c d e f
00 30 68 99 1b 87 b9 21 78 50 39 db e1 72 9 62 3c
10 3e 7e 5e 8e f1 a0 cc a3 2a 1d fb b6 d6 20 c4 8d
20 81 65 f5 89 cb 9d 77 c6 57 43 56 17 d4 40 1a 4d
30 c0 63 6c e3 b7 c8 64 6a 53 aa 38 98 0c f4 9b ed
40 7f 22 76 af dd 3a 0b 58 67 88 06 c3 35 0d 01 8b
50 8c c2 e6 5f 02 24 75 93 66 1e e5 e2 54 d8 10 ce
60 7a e8 08 2c 12 97 32 ab b4 27 0a 23 df ef ca d9
70 b8 fa dc 31 6b d1 ad 19 49 bd 51 96 ee e4 a8 41
80 da ff cd 55 86 36 be 61 52 f8 bb 0e 82 48 69 9a
90 e0 47 9e 5c 04 4b 34 15 79 26 a7 de 29 ae 92 d7
a0 84 e9 d2 ba 5d f3 c5 b0 bf a4 3b 71 44 46 2b fc
b0 eb 6f d5 f6 14 fe 7c 70 5a 7d fd 2f 18 83 16 a5
c0 91 1f 05 95 74 a9 c1 5b 4a 85 6d 13 07 4f 4e 45
d0 b2 0f c9 1c a6 bc ec 73 90 7b cf 59 8f a1 f9 2d
e0 f2 b1 00 94 37 9f d0 2e 9c 6e 28 3f 80 f0 3d d3
f0 25 8a b5 e7 42 b3 c7 ea f7 4c 11 33 03 a2 ac 60
For example, SB1(0x23) = 0x26 and SB4(0xef) = 0xd3. Note that SB3
and SB4 are the inverse functions of SB1 and SB2, respectively, and
accordingly SL2 is the inverse of SL1.
2.4.3. Diffusion Layer
Diffusion layer A is an algorithm that takes a 16-byte string x0 ||
x1 || ... || x15 as input and outputs a 16-byte string
y0 || y1 ||...|| y15 by the following equations.
y0 = x3 ^ x4 ^ x6 ^ x8 ^ x9 ^ x13 ^ x14,
y1 = x2 ^ x5 ^ x7 ^ x8 ^ x9 ^ x12 ^ x15,
y2 = x1 ^ x4 ^ x6 ^ x10 ^ x11 ^ x12 ^ x15,
y3 = x0 ^ x5 ^ x7 ^ x10 ^ x11 ^ x13 ^ x14,
y4 = x0 ^ x2 ^ x5 ^ x8 ^ x11 ^ x14 ^ x15,
y5 = x1 ^ x3 ^ x4 ^ x9 ^ x10 ^ x14 ^ x15,
y6 = x0 ^ x2 ^ x7 ^ x9 ^ x10 ^ x12 ^ x13,
y7 = x1 ^ x3 ^ x6 ^ x8 ^ x11 ^ x12 ^ x13,
y8 = x0 ^ x1 ^ x4 ^ x7 ^ x10 ^ x13 ^ x15,
y9 = x0 ^ x1 ^ x5 ^ x6 ^ x11 ^ x12 ^ x14,
y10 = x2 ^ x3 ^ x5 ^ x6 ^ x8 ^ x13 ^ x15,
y11 = x2 ^ x3 ^ x4 ^ x7 ^ x9 ^ x12 ^ x14,
y12 = x1 ^ x2 ^ x6 ^ x7 ^ x9 ^ x11 ^ x12,
y13 = x0 ^ x3 ^ x6 ^ x7 ^ x8 ^ x10 ^ x13,
y14 = x0 ^ x3 ^ x4 ^ x5 ^ x9 ^ x11 ^ x14,
y15 = x1 ^ x2 ^ x4 ^ x5 ^ x8 ^ x10 ^ x15.
Note that A is an involution. That is, for any 16-byte input string
x, x = A(A(x)) holds.
3. Security Considerations
ARIA is designed to be resistant to all known attacks on block
ciphers [ARIA03]. Its security was analyzed by the COSIC group of
K.U.Leuven in Belgium [ARIAEVAL] and no security flaw has been found.
4. Informative References
[ARIAEVAL] Biryukov, A., et al., "Security and Performance Analysis
of ARIA", K.U.Leuven (2003), available at
http://www.cosic.esat.kuleuven.be/publications/
article-500.pdf
[ARIA03] Kwon, D., et al., "New Block Cipher: ARIA", ICISC 2003,
pp. 432-445.
[ARIAKS] Korean Agency for Technology and Standards (KATS), "128
bit block encryption algorithm ARIA", KS X 1213:2004,
December 2004 (In Korean).
[ARIAPKCS] RSA Laboratories, PKCS #11 v2.20 Amendment 3 Revision 1:
Additional PKCS #11 Mechanisms, January 2007.
[X.680] ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002,
Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation.
[X.681] ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002,
Information technology - Abstract Syntax Notation One
(ASN.1): Information object specification.
[X.682] ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002,
Information technology - Abstract Syntax Notation One
(ASN.1): Constraint specification.
[X.683] ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002,
Information technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 specifications.
Appendix A. Example Data of ARIA
Here are test data for ARIA in hexadecimal form.
A.1. 128-Bit Key
- Key : 000102030405060708090a0b0c0d0e0f
- Plaintext : 00112233445566778899aabbccddeeff
- Ciphertext: d718fbd6ab644c739da95f3be6451778
- Round key generators
W0: 000102030405060708090a0b0c0d0e0f
W1: 2afbea741e1746dd55c63ba1afcea0a5
W2: 7c8578018bb127e02dfe4e78c288e33c
W3: 6785b52b74da46bf181054082763ff6d
- Encryption round keys
e1: d415a75c794b85c5e0d2a0b3cb793bf6
e2: 369c65e4b11777ab713a3e1e6601b8f4
e3: 0368d4f13d14497b6529ad7ac809e7d0
e4: c644552b549a263fb8d0b50906229eec
e5: 5f9c434951f2d2ef342787b1a781794c
e6: afea2c0ce71db6de42a47461f4323c54
e7: 324286db44ba4db6c44ac306f2a84b2c
e8: 7f9fa93574d842b9101a58063771eb7b
e9: aab9c57731fcd213ad5677458fcfe6d4
e10: 2f4423bb06465abada5694a19eb88459
e11: 9f8772808f5d580d810ef8ddac13abeb
e12: 8684946a155be77ef810744847e35fad
e13: 0f0aa16daee61bd7dfee5a599970fb35
- Intermediate round values
P1: 7fc7f12befd0a0791de87fa96b469f52
P2: ac8de17e49f7c5117618993162b189e9
P3: c3e8d59ec2e62d5249ca2741653cb7dd
P4: 5d4aebb165e141ff759f669e1e85cc45
P5: 7806e469f68874c5004b5f4a046bbcfa
P6: 110f93c9a630cdd51f97d2202413345a
P7: e054428ef088fef97928241cd3be499e
P8: 5734f38ea1ca3ddd102e71f95e1d5f97
P9: 4903325be3e500cccd52fba4354a39ae
P10: cb8c508e2c4f87880639dc896d25ec9d
P11: e7e0d2457ed73d23d481424095afdca0
A.2. 192-Bit Key
Key : 000102030405060708090a0b0c0d0e0f
1011121314151617
Plaintext : 00112233445566778899aabbccddeeff
Ciphertext: 26449c1805dbe7aa25a468ce263a9e79
A.3. 256-Bit Key
Key : 000102030405060708090a0b0c0d0e0f
101112131415161718191a1b1c1d1e1f
Plaintext : 00112233445566778899aabbccddeeff
Ciphertext: f92bd7c79fb72e2f2b8f80c1972d24fc
Appendix B. OIDs
Here is an ASN.1 module conforming to the 2002 version of ASN.1
[X.680][X.681][X.682][X.683].
AriaModesOfOperation {
iso(1) member-body(2) korea(400) nsri(200046) algorithm (1)
symmetric-encryption-algorithm(1) asn1-module(0) alg-oids(0) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
OID ::= OBJECT IDENTIFIER
-- Synonyms --
id-algorithm OID ::= { iso(1) member-body(2) korea(410) nsri(200046)
algorithm(1)}
id-sea OID ::= { id-algorithm symmetric-encryption-algorithm(1)}
id-pad OID ::= { id-algorithm pad(2)}
id-pad-null RELATIVE-OID ::= {0} -- no padding algorithms identified
id-pad-1 RELATIVE-OID ::= {1}
-- padding method 2 of ISO/IEC 9797-1:1999
-- confidentiality modes:
-- ECB, CBC, CFB, OFB, CTR
id-aria128-ecb OID ::= { id-sea aria128-ecb(1)}
id-aria128-cbc OID ::= { id-sea aria128-cbc(2)}
id-aria128-cfb OID ::= { id-sea aria128-cfb(3)}
id-aria128-ofb OID ::= { id-sea aria128-ofb(4)}
id-aria128-ctr OID ::= { id-sea aria128-ctr(5)}
id-aria192-ecb OID ::= { id-sea aria192-ecb(6)}
id-aria192-cbc OID ::= { id-sea aria192-cbc(7)}
id-aria192-cfb OID ::= { id-sea aria192-cfb(8)}
id-aria192-ofb OID ::= { id-sea aria192-ofb(9)}
id-aria192-ctr OID ::= { id-sea aria192-ctr(10)}
id-aria256-ecb OID ::= { id-sea aria256-ecb(11)}
id-aria256-cbc OID ::= { id-sea aria256-cbc(12)}
id-aria256-cfb OID ::= { id-sea aria256-cfb(13)}
id-aria256-ofb OID ::= { id-sea aria256-ofb(14)}
id-aria256-ctr OID ::= { id-sea aria256-ctr(15)}
-- authentication modes: CMAC
id-aria128-cmac OID ::= { id-sea aria128-cmac(21)}
id-aria192-cmac OID ::= { id-sea aria192-cmac(22)}
id-aria256-cmac OID ::= { id-sea aria256-cmac(23)}
-- modes for both confidentiality and authentication
-- OCB 2.0, GCM, CCM, Key Wrap
id-aria128-ocb2 OID ::= { id-sea aria128-ocb2(31)}
id-aria192-ocb2 OID ::= { id-sea aria192-ocb2(32)}
id-aria256-ocb2 OID ::= { id-sea aria256-ocb2(33)}
id-aria128-gcm OID ::= { id-sea aria128-gcm(34)}
id-aria192-gcm OID ::= { id-sea aria192-gcm(35)}
id-aria256-gcm OID ::= { id-sea aria256-gcm(36)}
id-aria128-ccm OID ::= { id-sea aria128-ccm(37)}
id-aria192-ccm OID ::= { id-sea aria192-ccm(38)}
id-aria256-ccm OID ::= { id-sea aria256-ccm(39)}
id-aria128-kw OID ::= { id-sea aria128-kw(40)}
id-aria192-kw OID ::= { id-sea aria192-kw(41)}
id-aria256-kw OID ::= { id-sea aria256-kw(42)}
-- ARIA Key-Wrap with Padding Algorithm (AES version: RFC 5649)
id-aria128-kwp OID ::= { id-sea aria128-kwp(43)}
id-aria192-kwp OID ::= { id-sea aria192-kwp(44)}
id-aria256-kwp OID ::= { id-sea aria256-kwp(45)}
AriaModeOfOperation ::= AlgorithmIdentifier
{ {AriaModeOfOperationAlgorithms} }
AriaModeOfOperationAlgorithms ALGORITHM ::= {
aria128ecb |aria128cbc |aria128cfb |aria128ofb |aria128ctr |
aria192ecb |aria192cbc |aria192cfb |aria192ofb |aria192ctr |
aria256ecb |aria256cbc |aria256cfb |aria256ofb |aria256ctr |
aria128cmac |aria192cmac |aria256cmac |
aria128ocb2 |aria192ocb2 |aria256ocb2 |
aria128gcm |aria192gcm |aria256gcm |
aria128ccm |aria192ccm |aria256ccm |
aria128kw |aria192kw |aria256kw |
aria128kwp |aria192kwp |aria256kwp ,
... --Extensible
}
aria128ecb ALGORITHM ::=
{ OID id-aria128-ecb PARAMS AriaEcbParameters }
aria128cbc ALGORITHM ::=
{ OID id-aria128-cbc PARAMS AriaCbcParameters }
aria128cfb ALGORITHM ::=
{ OID id-aria128-cfb PARAMS AriaCfbParameters }
aria128ofb ALGORITHM ::=
{ OID id-aria128-ofb PARAMS AriaOfbParameters }
aria128ctr ALGORITHM ::=
{ OID id-aria128-ctr PARAMS AriaCtrParameters }
aria192ecb ALGORITHM ::=
{ OID id-aria192-ecb PARAMS AriaEcbParameters }
aria192cbc ALGORITHM ::=
{ OID id-aria192-cbc PARAMS AriaCbcParameters }
aria192cfb ALGORITHM ::=
{ OID id-aria192-cfb PARAMS AriaCfbParameters }
aria192ofb ALGORITHM ::=
{ OID id-aria192-ofb PARAMS AriaOfbParameters }
aria192ctr ALGORITHM ::=
{ OID id-aria192-ctr PARAMS AriaCtrParameters }
aria256ecb ALGORITHM ::=
{ OID id-aria256-ecb PARAMS AriaEcbParameters }
aria256cbc ALGORITHM ::=
{ OID id-aria256-cbc PARAMS AriaCbcParameters }
aria256cfb ALGORITHM ::=
{ OID id-aria256-cfb PARAMS AriaCfbParameters }
aria256ofb ALGORITHM ::=
{ OID id-aria256-ofb PARAMS AriaOfbParameters }
aria256ctr ALGORITHM ::=
{ OID id-aria256-ctr PARAMS AriaCtrParameters }
aria128cmac ALGORITHM ::=
{ OID id-aria128-cmac PARAMS AriaCmacParameters }
aria192cmac ALGORITHM ::=
{ OID id-aria192-cmac PARAMS AriaCmacParameters }
aria256cmac ALGORITHM ::=
{ OID id-aria256-cmac PARAMS AriaCmacParameters }
aria128ocb2 ALGORITHM ::=
{ OID id-aria128-ocb2 PARAMS AriaOcb2Parameters }
aria192ocb2 ALGORITHM ::=
{ OID id-aria192-ocb2 PARAMS AriaOcb2Parameters }
aria256ocb2 ALGORITHM ::=
{ OID id-aria256-ocb2 PARAMS AriaOcb2Parameters }
aria128gcm ALGORITHM ::=
{ OID id-aria128-gcm PARAMS AriaGcmParameters }
aria192gcm ALGORITHM ::=
{ OID id-aria192-gcm PARAMS AriaGcmParameters }
aria256gcm ALGORITHM ::=
{ OID id-aria256-gcm PARAMS AriaGcmParameters }
aria128ccm ALGORITHM ::=
{ OID id-aria128-ccm PARAMS AriaCcmParameters }
aria192ccm ALGORITHM ::=
{ OID id-aria192-ccm PARAMS AriaCcmParameters }
aria256ccm ALGORITHM ::=
{ OID id-aria256-ccm PARAMS AriaCcmParameters }
aria128kw ALGORITHM ::= { OID id-aria128-kw }
aria192kw ALGORITHM ::= { OID id-aria192-kw }
aria256kw ALGORITHM ::= { OID id-aria256-kw }
aria128kwp ALGORITHM ::= { OID id-aria128-kwp }
aria192kwp ALGORITHM ::= { OID id-aria192-kwp }
aria256kwp ALGORITHM ::= { OID id-aria256-kwp }
AriaPadAlgo ::= CHOICE {
specifiedPadAlgo RELATIVE-OID,
generalPadAlgo OID
}
AriaEcbParameters ::= SEQUENCE {
padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-null
}
AriaCbcParameters ::= SEQUENCE {
m INTEGER DEFAULT 1,
-- number of stored ciphertext blocks
padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-1
}
AriaCfbParameters ::= SEQUENCE {
r INTEGER,
-- bit-length of feedback buffer, 128<=r<=128*1024
k INTEGER,
-- bit-length of feedback variable, 1<=k<=128
j INTEGER,
-- bit-length of plaintext/ciphertext block, 1<=j<=k
padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-null
}
AriaOfbParameters ::= SEQUENCE {
j INTEGER,
-- bit-length of plaintext/ciphertext block, 1<=j<=128
padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-null
}
AriaCtrParameters ::= SEQUENCE {
j INTEGER,
-- bit-length of plaintext/ciphertext block, 1<=j<=128
padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-null
}
AriaCmacParameters ::= INTEGER -- bit-length of authentication tag
AriaOcb2Parameters ::= INTEGER -- bit-length of authentication tag
AriaGcmParameters ::= SEQUENCE {
s INTEGER, -- bit-length of starting variable
t INTEGER -- bit-length of authentication tag
}
AriaCcmParameters ::= SEQUENCE {
w INTEGER (2|3|4|5|6|7|8),
-- length of message length field in octets
t INTEGER (32|48|64|80|96|112|128)
-- bit-length of authentication tag
}
ALGORITHM ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Type OPTIONAL
}
WITH SYNTAX { OID &id [PARAMS &Type] }
AlgorithmIdentifier { ALGORITHM:AlgoSet } ::= SEQUENCE {
algorithm ALGORITHM.&id( {AlgoSet} ),
parameters ALGORITHM.&Type( {AlgoSet}{@algorithm} ) OPTIONAL
}
END
Authors' Addresses
Jungkeun Lee
National Security Research Institute
P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
EMail: jklee@ensec.re.kr
Jooyoung Lee
National Security Research Institute
P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
EMail: jlee05@ensec.re.kr
Jaeheon Kim
National Security Research Institute
P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
EMail: jaeheon@ensec.re.kr
Daesung Kwon
National Security Research Institute
P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
EMail: ds_kwon@ensec.re.kr
Choonsoo Kim
National Security Research Institute
P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
EMail: jbr@ensec.re.kr