Rfc | 5372 |
Title | Payload Format for JPEG 2000 Video: Extensions for Scalability and
Main Header Recovery |
Author | A. Leung, S. Futemma, E. Itakura |
Date | October
2008 |
Format: | TXT, HTML |
Status: | PROPOSED STANDARD |
|
Network Working Group A. Leung
Request for Comments: 5372 S. Futemma
Category: Standards Track E. Itakura
Sony
October 2008
Payload Format for JPEG 2000 Video:
Extensions for Scalability and Main Header Recovery
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Abstract
This memo describes extended uses for the payload header in "RTP
Payload Format for JPEG 2000 Video Streams" as specified in RFC 5371,
for better support of JPEG 2000 features such as scalability and main
header recovery.
This memo must be accompanied with a complete implementation of "RTP
Payload Format for JPEG 2000 Video Streams". That document is a
complete description of the payload header and signaling, this
document only describes additional processing for the payload header.
There is an additional media type and Session Description Protocol
(SDP) marker signaling for implementations of this document.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Description of the Mechanisms . . . . . . . . . . . . . . 3
1.1.1. Main Header Compensation . . . . . . . . . . . . . . . 3
1.1.2. Priority Table . . . . . . . . . . . . . . . . . . . . 3
1.2. Motivations for Priority Field Coding . . . . . . . . . . 4
1.2.1. Scenario: Just Enough Resolution . . . . . . . . . . . 4
1.2.2. Scenario: Multiple Clients, Single Source . . . . . . 4
1.3. Conventions Used in This Document . . . . . . . . . . . . 4
2. Payload Format Enhanced Processing . . . . . . . . . . . . . . 5
2.1. Enhanced Processing Markers . . . . . . . . . . . . . . . 5
3. Priority Mapping Table . . . . . . . . . . . . . . . . . . . . 6
3.1. Packet-Number-Based Ordering . . . . . . . . . . . . . . . 7
3.2. Progression-Based Ordering . . . . . . . . . . . . . . . . 7
3.3. Layer-Based Ordering . . . . . . . . . . . . . . . . . . . 9
3.4. Resolution-Based Ordering . . . . . . . . . . . . . . . . 9
3.5. Component-Based Ordering . . . . . . . . . . . . . . . . . 10
4. JPEG 2000 Main Header Compensation Scheme . . . . . . . . . . 10
4.1. Sender Processing . . . . . . . . . . . . . . . . . . . . 11
4.2. Receiver Processing . . . . . . . . . . . . . . . . . . . 11
5. Media Type Registration . . . . . . . . . . . . . . . . . . . 11
6. SDP Parameters . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1. Mapping of the Optional Parameters to SDP . . . . . . . . 12
6.2. Usage with the SDP Offer/Answer Model . . . . . . . . . . 13
6.2.1. Examples . . . . . . . . . . . . . . . . . . . . . . . 13
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 16
8. Security Considerations . . . . . . . . . . . . . . . . . . . 16
9. Congestion Control . . . . . . . . . . . . . . . . . . . . . . 16
10. Normative References . . . . . . . . . . . . . . . . . . . . . 16
Appendix A. Sample Headers in Detail . . . . . . . . . . . . . . 17
A.1. Sample 1: Progressive Image with Single Tile, 3500
Bytes (i.e., thumbnail) . . . . . . . . . . . . . . . . . 17
A.2. Sample 2: Image with 4 Tiles . . . . . . . . . . . . . . . 19
A.3. Sample 3: Packing Multiple Tiles in Single Payload,
Fragmented Header. No Header Compensation,
Progressive Image . . . . . . . . . . . . . . . . . . . . 20
A.4. Sample 4: Interlace Image, Single Tile . . . . . . . . . . 22
1. Introduction
This document is an extension of "RTP Payload Format for JPEG 2000
Video Streams" [RFC5371]. These are additional mechanisms that can
be used with certain parts of the header in [RFC5371] to support JPEG
2000 features such as scalability and a main header compensation
method. These mechanisms are described in detail in this document.
These are optional extensions to RFC 5371 [RFC5371], which one may
use to make better use of JPEG 2000 features. These extensions are
not required for any implementations of RFC 5371 [RFC5371].
1.1. Description of the Mechanisms
1.1.1. Main Header Compensation
JPEG 2000 image header contains essential decoding information for
the decoder. If a JPEG 2000 decoder receives JPEG 2000 image data
without a JPEG 2000 image header, it could not decode the JPEG 2000
image data properly. Encoders for JPEG 2000 video very rarely change
encoding parameters between successive frames. So, the possibility
of the decoder successively decoding the new JPEG 2000 image data
using a prior JPEG 2000 image header is very high in this situation.
The main header compensation scheme used in this document exploits
the fact that successive JPEG 2000 video images rarely change
encoding parameters. It requires receivers to save past JPEG 2000
image headers to use in case of missing JPEG 2000 image headers in
the future. Signaling of changes to the JPEG 2000 image header is
done through the payload header. When the mh_id value of the payload
header changes, receivers should save the new JPEG 2000 header to use
for main header recovery.
1.1.2. Priority Table
JPEG 2000 codestream has rich functionality built into it so decoders
can easily handle scalable delivery or progressive transmission.
Progressive transmission allows images to be reconstructed with
increasing pixel accuracy or spatial resolution. This feature allows
the reconstruction of images with different resolutions and pixel
accuracy, for different target devices. A single image source can
provide a codestream that is easily processed for smaller image
display devices.
JPEG 2000 packets contain all compressed image data from a specific
layer, component, resolution level, and/or precinct. The order in
which these JPEG 2000 packets are found in the codestream is called
the progression order. The ordering of the JPEG 2000 packets can
progress along four axes: layer, component, resolution, and precinct
(or position).
Providing a priority field to indicate the importance of data
contained in a given RTP packet can aid in usage of JPEG 2000
progressive and scalable functions.
1.2. Motivations for Priority Field Coding
The JPEG 2000 coding scheme allows one to reorder the codestream in
many ways. Even when the coding scheme is determined and arranged by
the encoder, a decoder can still re-arrange the code stream on the
fly to suit decode parameters such as re-arranging from resolution
progressive to quality progressive.
Using the priority field coding, the decoder gains insight into the
codestream without access to the full codestream and exposes features
of JPEG 2000 to a higher level.
The authors found the scenarios below to utilize this field. The
priority field allows more information about the image to be sent
without more signaling between sender and receivers to leverage JPEG
2000 capabilities.
1.2.1. Scenario: Just Enough Resolution
The scenario is when rapid scene access is more important than higher
image quality. By using the priority field, the receiver can decode
for its own quality level. If the sender cannot determine the
receiver's resolution, the receiver can select which parts of the
codestream to be decoded or loaded by using the priority field.
1.2.2. Scenario: Multiple Clients, Single Source
In a multicast environment, there are clients with better visual
capability than others (i.e., TV conference versus Mobile). The
respective clients can use the priority field to determine which
packets are vital for their own visual presentation. The sender only
has to do work on the priority field to optimally serve all the
clients while only managing a single visual stream.
1.3. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119. [RFC2119].
2. Payload Format Enhanced Processing
2.1. Enhanced Processing Markers
This section of the document describes additional usage in the values
of mh_id and priority fields and interpretation that differ from RFC
5371 [RFC5371]. Implementations of this document should follow RFC
5371 [RFC5371] first then add additional header processing as
described in this document. Implementations following this document
are expected to interoperate with implementations of [RFC5371] and
this document as well.
The RTP payload header format for JPEG 2000 video stream is as
follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|tp |MHF|mh_id|T| priority | tile number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|reserved | fragment offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: RTP Payload Header Format for JPEG 2000
mh_id (Main Header Identification): 3 bits
Main header identification value. This is used for JPEG 2000 main
header recovery.
The initial value of mh_id MUST be 1 at the beginning of the
session.
The same mh_id value is used as long as the coding parameters
described in the main header remains unchanged between frames.
The mh_id value MUST be incremented by 1 every time a new main
header is transmitted. Once the mh_id value becomes greater than
7, it SHOULD roll over to 1.
When mh_id is 0, it has special usage for the receiver. This
special usage is described in Section 4.2 of this document.
Senders should follow Section 4.1 of this document for proper
mh_id assignment and usage.
priority: 8 bits
The priority field indicates the importance of the JPEG 2000
packet included in the payload. Typically, a higher priority
value is set in the packets containing JPEG 2000 packets
containing the lower sub-bands.
Special values of priority:
0: This is reserved for payloads that contain a header (main or
tile part header). This is considered the most important.
1 to 255: These values decrease in importance as the values
increase (i.e., 1 is more important than 2, etc.). Applying
priority values should correlate directly to the JPEG 2000
codestream in importance.
The lower the priority value, the higher the importance. A
priority value of 0 is the highest importance and 255 is the
lowest importance. We define the priority value 0 as a special
priority value for the headers (the main header or tile-part
header). If any headers (the main header or tile-part header) are
packed into the RTP payload, the sender MUST set the priority
value to 0.
Assignment of the values is described in Section 3.
3. Priority Mapping Table
For the progression order, the priority value for each JPEG 2000
packet is given by the priority mapping table.
This document specify several commonly used priority mapping tables,
pre-defined priority mapping tables: packet-number-based (default),
progression-based, layer-based, resolution-based, and component-
based.
Packet number priority mapping is REQUIRED to be supported by clients
implementing this specification. Other priority mapping tables
(progression, layer, resolution, and component-based) are OPTIONAL to
implementations of this specification.
Rules that all implementations of this specification MUST follow in
all priority modes:
o When there is a header in the packet with a JPEG 2000 packet, the
sender MUST set the payload packet priority value to 0.
o When there are multiple JPEG 2000 packets in the same RTP payload
packet, the sender MUST set the payload packet priority value to
the lowest JPEG 2000 packet (i.e., if JPEG 2000 packets with
priority: 5,6,7 are packed into a single payload, the priority
value will be 5).
3.1. Packet-Number-Based Ordering
Packet-number-based ordering assigns the payload packet priority
value from the "JPEG 2000 packet value" (note: JPEG 2000 codestreams
are stored in units of packets and each packet has a value). This
method is the default method for assigning priority value. All
implementations of this specification MUST support this method.
If the JPEG 2000 codestream packet value is greater than 255, the
sender MUST set the payload priority value to 255.
3.2. Progression-Based Ordering
The sender will assign the payload packet priority value only based
on layer, resolution, and component ordering of the codestream.
Progression-based ordering can assign the different priority values
in the same layer or the resolution level, which it cannot do in the
layer-based ordering or resolution-based ordering.
Unlike the packet-number-based ordering, the progression-based
ordering does not assign a value in the position level, which saves
the priority values. The priority value in the position level is not
so important because a receiver could recognize the position by
checking the tile number field. Therefore, the progression-based
ordering would be useful.
The general algorithm is that the ordering is based on the triple
<layer, resolution, component> and the minimum priority is 1. So, if
the codestream is constructed of L layers (layer value ranges from 0
to L-1), R resolutions (resolution value ranges from 0 to R-1), and C
components (component value ranges from 0 to C-1), then for a triple
<lval, rval, cval>:
the priority value of the codestream in LRCP order is calculated
as:
priority = 1 + cval + (C * rval) + (C * R * lval)
the priority value of the codestream in RLCP order is calculated
as:
priority = 1 + cval + (C * lval) + (C * L * rval)
the priority value of the codestream in RPCL order is calculated
as:
priority = 1 + lval + (L * cval) + (L * C * rval)
the priority value of which codestream in PCRL order is calculated
as:
priority = 1 + lval + (L * rval) + (L * R * cval)
the priority value of which codestream in CPRL order is calculated
as:
priority = 1 + lval + (L * rval) + (L * R * cval)
For example:
If the codestream is ordered in LRCP (Layer, Resolution, Component,
Position) with 1 layer (L=1), 2 resolutions (R=2), 3 components
(C=3), and 2 positions, the priority value should be (1 + cval +
3*rval + 6*lval). Then an example would have packet numbering as so:
All the packets in:
layer.........0
resolution....0
component.....0
position......0 or 1
then the packet priority value : 1
All the packets in:
layer.........0
resolution....0
component.....1
position......0 or 1
then the packet priority value : 2
All the packets in:
layer.........0
resolution....0
component.....2
position......0 or 1
then the packet priority value : 3
All the packets in:
layer.........0
resolution....1
component.....0
position......0 or 1
then the packet priority value : 4
All the packets in:
layer.........0
resolution....1
component.....1
position......0 or 1
then the packet priority value : 5
3.3. Layer-Based Ordering
The layer-based priority mapping table simplifies the default mapping
to just matching JPEG 2000 packets together from the same layer.
For example:
All the packets in layer 0 : packet priority value : 1
All the packets in layer 1 : packet priority value : 2
All the packets in layer 2 : packet priority value : 3
...
All the packets in layer n : packet priority value : n+1
All the packets in layer 255 : packet priority value : 255
3.4. Resolution-Based Ordering
Resolution-based priority mapping table is similar to the layer-based
order but for JPEG 2000 packets of the same resolution.
For example:
All the packets in resolution 0 : packet priority value : 1
All the packets in resolution 1 : packet priority value : 2
All the packets in resolution 2 : packet priority value : 3
...
All the packets in resolution n : packet priority value : n+1
All the packets in resolution 255 : packet priority value : 255
3.5. Component-Based Ordering
Component-based priority mapping table is mapping together JPEG 2000
components of the same component.
For example:
All the packets in component 0 : packet priority value : 1
All the packets in component 1 : packet priority value : 2
All the packets in component 2 : packet priority value : 3
...
All the packets in component n : packet priority value : n+1
All the packets in component 255 : packet priority value : 255
4. JPEG 2000 Main Header Compensation Scheme
The mh_id field of the payload header is used to indicate whether the
encoding parameters of the main header are the same as the encoding
parameters of the previous frame. The same value is set in mh_id of
the RTP packet in the same frame. The mh_id and encode parameters
are not associated with each other as 1:1, but they are used to
indicate whether or not the encode parameters of the previous frame
are the same in the event of a lost header.
The mh_id field value SHOULD be saved from previous frames to be used
to recover the current frame's main header. If the mh_id of the
current frame has the same value as the mh_id value of the previous
frame, the previous frame's main header MAY be used to decode the
current frame, in case of a lost header in the current frame.
The sender MUST increment mh_id when parameters in the header change
and send a new main header accordingly.
The receiver MAY use the mh_id and MAY retain the header for such
compensation.
4.1. Sender Processing
The sender MUST transmit RTP packets with the same mh_id value if the
encoder parameters of the current frame are the same as the previous
frame. The encoding parameters are the fixed information marker
segment (SIZ marker) and functional marker segments (COD, COC, RGN,
QCD, QCC, and POC) specified in JPEG 2000 Part 1, Annex A
[JPEG2000Pt_1].
If the encode parameters changes, the sender transmitting RTP packets
MUST increment the mh_id value by one, but when the mh_id value
becomes greater than 7, a sender MUST set the mh_id value back to 1.
4.2. Receiver Processing
When the receiver receives the main header completely, the RTP
sequence number, the mh_id, and the main header should be saved.
Only the last main header that was received completely SHOULD be
saved. When the mh_id value is 0, the receiver SHOULD NOT save the
header.
When the main header is not received, the receiver may compare the
current payload header's mh_id value with the previous saved mh_id
value. If the values match, decoding may be performed by using the
previously saved main header.
If the mh_id field is set to 0, the receiver MUST NOT save the main
header and MUST NOT compensate for lost headers.
If the mh_id value changes, receivers SHOULD save the current header
and save the new mh_id value. The old saved header should be deleted
from storage.
Also, if the decoder detects an inconsistency between the header and
payload, it is recommended to clear the saved mh_id and the saved
main header. Please see Section 8 for more explanation.
5. Media Type Registration
This document extends the associated media type "video/jpeg2000" from
RFC 5371 [RFC5371]. Here are additional optional parameters.
Additional optional parameters:
mhc: Main Header Compensation. This option is used when a sender
and/or receiver is utilizing the Main Header Compensation
technique as specified in this document. Acceptable values
when using the Main Header Compensation technique is "1";
otherwise, it should be "0".
This is a list of options to be included when the sender or
receiver is utilizing the priority table option as specified in
this document.
pt: Priority Table. This option is followed by a comma-separated
list of pre-defined priority table definitions to be used by
sender or receiver.
The option appearing front most in the option line is the most
important and the next are of decreasing importance.
Acceptable values:
progression: this table follows the progression ordering of
the codestream.
layer: this table follows the layer ordering of the
codestream.
resolution: this table follows the resolution ordering of
the codestream.
component: this table follows the component ordering of the
codestream.
default: this table follows the packet ordering of the
codestream.
6. SDP Parameters
6.1. Mapping of the Optional Parameters to SDP
The new optional parameters mhc and pt, if presented, MUST be
included in the "a=fmtp" line of SDP. These parameters are expressed
as a media type string, in the form of a semicolon-separated list of
parameter=value pairs.
6.2. Usage with the SDP Offer/Answer Model
In addition to the SDP Offer/Answer section in RFC 5371 [RFC5371]:
When offering JPEG 2000 over RTP using SDP in an Offer/Answer model
[RFC3264], the following rules and limitations apply:
o All parameters MUST have an acceptable value for that parameter.
o All parameters MUST correspond to the parameters of the payload.
o If the optional parameter "mhc" is used, it MUST appear in the
offer with value "1", and if accepted, it SHOULD appear in the
answer.
o If the optional parameter "pt" is used, it MUST appear in the
offer containing a complete comma-separated list indicating which
priority table definitions the sender supports. If accepted, it
SHOULD appear in the answer containing a single priority table
definition selected from the offer.
o If the optional parameter "mhc" is used, it MUST appear in the
offer with value "1", and if accepted, it MUST appear in the
answer. If the optional parameter "pt" is used, it MUST appear in
the offer containing a complete comma-separated list indicating
which priority table definitions the sender supports. If
accepted, it MUST appear in the answer containing a single
priority table definition selected from the offer.
o In a multicast environment:
* Senders should send out one option for a priority table
definition for everyone in the group.
* Even if a single client in the group does not support the
extensions outlined in this document, senders MAY use these
mechanisms. A receiver that doesn't support the mechanisms
would safely ignore the values.in mh_id and priority field.
6.2.1. Examples
Offer/Answer example exchanges are provided.
6.2.1.1. Example 1
Alice offers Main Header Compensation functionality, YCbCr 422 color
space, interlace image with 720-pixel width and 480-pixel height, and
several priority table options (default, progression, layer,
resolution, component) as below:
v=0
o=alice 2890844526 2890844526 IN IP4 host.example
s=
c=IN IP4 host.example
t=0 0
m=video 49170 RTP/AVP 98
a=rtpmap:98 jpeg2000/90000
a=fmtp:98 mhc=1; sampling=YCbCr-4:2:2; interlace=1;
pt=default,progression,layer,resolution, component;
width=720;height=480
Bob accepts Main Header Compensation functionality, YCbCr-4:2:2 color
space, interlace image, default mapping table and replies:
v=0
o=bob 2890844730 2890844731 IN IP4 host.example
s=
c=IN IP4 host.example
t=0 0
m=video 49920 RTP/AVP 98
a=rtpmap:98 jpeg2000/90000
a=fmtp:98 mhc=1; sampling=YCbCr-4:2:2;interlace=1;
pt=default;width=720;height=480
6.2.1.2. Example 2
Alice offers Main Header Compensation, YCbCr 420 color space,
progressive image with 320-pixel width and 240-pixel height, and
layer priority table options as below:
v=0
o=alice 2890844526 2890844526 IN IP4 host.example
s=
c=IN IP4 host.example
t=0 0
m=video 49170 RTP/AVP 98
a=rtpmap:98 jpeg2000/90000
a=fmtp:98 mhc=1; sampling=YCbCr-4:2:0;
pt=layer;width=320;height=240
Bob does not accept Main Header Compensation functionality but
accepts YCbCr-4:2:0 color space, layer-based priority mapping and
replies:
v=0
o=bob 2890844730 2890844731 IN IP4 host.example
s=
c=IN IP4 host.example
t=0 0
m=video 49920 RTP/AVP 98
a=rtpmap:98 jpeg2000/90000
a=fmtp:98 mhc=0; sampling=YCbCr-4:2:0;
pt=layer;width=320;height=240
6.2.1.3. Example 3
Alice offers 27 MHz timestamp, Main Header Compensation, YCbCr 420
color space, progressive image with 320-pixel width and 240-pixel
height, and layer priority table options as below:
v=0
o=alice 2890844526 2890844526 IN IP4 host.example
s=
c=IN IP4 host.example
t=0 0
m=video 49170 RTP/AVP 98 99
a=rtpmap:98 jpeg2000/27000000
a=rtpmap:99 jpeg2000/90000
a=fmtp:98 mhc=1; sampling=YCbCr-4:2:0;
pt=layer;width=320;height=240
a=fmtp:99 mhc=1; sampling=YCbCr-4:2:0;
pt=layer;width=320;height=240
Bob can accept payload type with 27 MHz timestamp, and does not
accept Main Header Compensation functionality but accepts YCbCr-4:2:0
color space, layer-based priority mapping and replies:
v=0
o=bob 2890844730 2890844731 IN IP4 host.example
s=
c=IN IP4 host.example
t=0 0
m=video 49920 RTP/AVP 98
a=rtpmap:98 jpeg2000/27000000
a=fmtp:98 mhc=0; sampling=YCbCr-4:2:0;
pt=layer;width=320;height=240
7. IANA Considerations
This document extends the associated media type "video/jpeg2000" from
5371 [RFC5371]. Additional parameters are specified in Section 5 of
this document.
8. Security Considerations
Please refer to Section 6 of RFC 5371 [RFC5371] for Security
Considerations regarding this RTP format. The security issues
regarding enhanced mechanisms presented in this document are
discussed in that section.
The mh_id field can identify a maximum of 7 different main headers.
If severe packet loss (either random or intentionally introduced by
an attacker) causes 6 successive updates to the main header to be
lost, the decoder will attempt decompression using an incorrect main
header. Even if the incorrect main header is passed, the standard
JPEG 2000 decoder could detect inconsistency of the codestream and
process it properly. It is recommended to clear the saved mh_id and
the saved main header if the decoder detects such an inconsistency.
9. Congestion Control
Please refer to Section 7 of RFC 5371 [RFC5371] for Congestion
Control regarding this RTP format.
10. Normative References
[RFC5371] Futemma, S., Leung, A., and E. Itakura, "RTP Payload
Format for JPEG 2000 Video Streams", RFC 5371,
October 2008.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[JPEG2000Pt_1] ISO/IEC JTC1/SC29, ISO/IEC 15444-1 | ITU-T Rec.
T.800, "Information Technology - JPEG 2000 Image
Coding System - Part 1: Core Coding System",
December 2000.
[RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer
Model with Session Description Protocol (SDP)",
RFC 3264, June 2002.
Appendix A. Sample Headers in Detail
The following figures are sample RTP headers demonstrating values
that should appear in the RTP header. The packet priority is Packet-
Number-Based Priority.
For reference, the payload header is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|tp |MHF|mh_id|T| priority | tile number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|reserved | fragment offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: JPEG 2000 Payload Header
A.1. Sample 1: Progressive Image with Single Tile, 3500 Bytes (i.e.,
thumbnail)
First Packet: This packet will have the whole main header 210 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 3 | 1 |1| 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF4F FF51 002F 0000 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Header Sample 1-1 (First Packet)
Second Packet: This packet will have a tile header and the first tile
part LLband 1500 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 | 1 |0| 1 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 210 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF90 000A 0000 0000 2DB3 0001 FF93 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Header Sample 1-2 (Second Packet)
Third Packet: This packet will have the next part in the tile, no
tile header 1500 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 | 1 |0| 2 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 1710 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|E841 4526 4556 9850 C2EA .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Header Sample 1-3 (Third Packet)
Fourth Packet: Last packet for the image 290 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 | 1 |0| 3 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 3210 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A55D 8B73 3B25 25C7 B9EB .... 2FBE B153|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Header Sample 1-4 (Fourth Packet)
A.2. Sample 2: Image with 4 Tiles
First Packet: This packet will have the whole main header 210 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 3 | 1 |1| 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF4F FF51 002F 0000 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Header Sample 2-1 (First Packet)
Second Packet: This packet will have a first tile part (tile 0) 1400
bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 | 1 |0| 1 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 210 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF90 000A 0000 0000 0578 0001 FF93 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: Header Sample 2-2 (Second Packet)
Third Packet: This packet will have a second tile part (tile 1) 1423
bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 | 1 |0| 1 | 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 1610 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF90 000A 0001 0000 058F 0001 FF93 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: Header Sample 2-3 (Third Packet)
Fourth Packet: This packet will have a third tile part (tile 2) 1355
bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 | 1 |0| 1 | 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 3033 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF90 000A 0002 0000 054B 0001 FF93 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: Header Sample 2-4 (4th Packet)
Fifth Packet: This packet will have a fourth tile part (tile 3) 1290
bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 | 1 |0| 1 | 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 4388 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF90 000A 0003 0000 050A 0001 FF93 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 11: Header Sample 2-5 (5th Packet)
A.3. Sample 3: Packing Multiple Tiles in Single Payload, Fragmented
Header. No Header Compensation, Progressive Image
First Packet: This packet will have the first part of the main header
110 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 1 | 0 |1| 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF4F FF51 002F 0000 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 12: Header Sample 3-1 (First Packet)
Second Packet: This packet has the second part of the main header.
1400 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 2 | 0 |1| 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 110 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF64 00FF .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 13: Header Sample 3-2 (Second Packet)
Third Packet: This packet has two tiles, tile 0 and tile 1 1400 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 | 0 |1| 1 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 1510 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF90 000A 0000 0000 02BC 0001 FF93 ... |
// . //
|FF90 000A 0001 0000 02BC 0001 FF93 ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 14: Header Sample 3-3 (Third Packet)
Fourth Packet: This packet has one tile, tile 2 1395 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 | 0 |0| 1 | 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 2910 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF90 000A 0002 0000 0573 0001 FF93 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 15: Header Sample 3-4 (4th Packet)
A.4. Sample 4: Interlace Image, Single Tile
The codestream of each image is ordered in LRCP (Layer, Resolution,
Component, Position) with 1 layer, 3 resolutions, 3 components and 1
position.
First packet: This packet will have the whole main header for the odd
field 210 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 1 | 3 | 1 |1| 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF4F FF51 002F 0000 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 16: Header Sample 4-1 (First Packet)
Second packet: This packet will have the first part of the odd
field's tile where three jp2-packets are included 1400 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 1 | 0 | 1 |1| 1 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 210 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF90 000A 0000 0000 0578 0001 FF93 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 17: Header Sample 4-2 (Second Packet)
Third packet: This packet will have the second part of the odd
field's tile 1400 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 1 | 0 | 1 |1| 4 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 1610 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|7F04 E708 27D9 D11D 22CB ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 18: Header Sample 4-3 (Third Packet)
Fourth packet: This packet will have the third part of the odd
field's tile 1300 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 1 | 0 | 1 |1| 7 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 3010 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|98BD EC9B 2826 DC62 D4AB ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 19: Header Sample 4-4 (4th Packet)
Fifth packet: This packet will have the whole main header for the
even field 210 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 2 | 3 | 1 |1| 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF4F FF51 002F 0000 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 20: Header Sample 4-5 (5th Packet)
Sixth packet: This packet will have the first part of the even
field's tile 1400 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 2 | 0 | 1 |1| 1 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 1610 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|FF90 000A 0000 0000 0578 0001 FF93 .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 21: Header Sample 4-6 (6th Packet)
Seventh packet: This packet will have the second part of the even
field's tile 1400 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 2 | 0 | 1 |1| 4 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 3010 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|626C 42F0 166B 6BD0 F8E1 ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 22: Header Sample 4-7 (7th Packet)
Eighth packet: This packet will have the third part of the even
field's tile 1300 bytes
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 2 | 0 | 1 |1| 7 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 4410 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|8114 41D5 18AB 4A1B ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 23: Header Sample 4-8 (8th Packet)
Authors' Addresses
Andrew Leung
Sony Corporation
EMail: andrew@ualberta.net
Satoshi Futemma
Sony Corporation
1-7-1 Konan
Minato-ku
Tokyo 108-0075
Japan
Phone: +81 3 6748-2111
EMail: satosi-f@sm.sony.co.jp
URI: http://www.sony.net/
Eisaburo Itakura
Sony Corporation
1-7-1 Konan
Minato-ku
Tokyo 108-0075
Japan
Phone: +81 3 6748-2111
EMail: itakura@sm.sony.co.jp
URI: http://www.sony.net/
Full Copyright Statement
Copyright (C) The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.