Rfc6568
TitleDesign and Application Spaces for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)
AuthorE. Kim, D. Kaspar, JP. Vasseur
DateApril 2012
Format:TXT, HTML
Status:INFORMATIONAL






Internet Engineering Task Force (IETF)                            E. Kim
Request for Comments: 6568                                          ETRI
Category: Informational                                        D. Kaspar
ISSN: 2070-1721                               Simula Research Laboratory
                                                             JP. Vasseur
                                                     Cisco Systems, Inc.
                                                              April 2012


                     Design and Application Spaces
   for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)

Abstract

   This document investigates potential application scenarios and use
   cases for low-power wireless personal area networks (LoWPANs).  This
   document provides dimensions of design space for LoWPAN applications.
   A list of use cases and market domains that may benefit and motivate
   the work currently done in the 6LoWPAN Working Group is provided with
   the characteristics of each dimension.  A complete list of practical
   use cases is not the goal of this document.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6568.














RFC 6568             6LoWPAN Design and Applications          April 2012


Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

























RFC 6568             6LoWPAN Design and Applications          April 2012


Table of Contents

   1. Introduction ....................................................3
      1.1. Terminology ................................................5
      1.2. Premise of Network Configuration ...........................5
   2. Design Space ....................................................6
   3. Application Scenarios ...........................................8
      3.1. Industrial Monitoring ......................................8
           3.1.1. A Use Case and Its Requirements .....................9
           3.1.2. 6LoWPAN Applicability ..............................10
      3.2. Structural Monitoring .....................................12
           3.2.1. A Use Case and Its Requirements ....................12
           3.2.2. 6LoWPAN Applicability ..............................14
      3.3. Connected Home ............................................15
           3.3.1. A Use Case and Its Requirements ....................15
           3.3.2. 6LoWPAN Applicability ..............................17
      3.4. Healthcare ................................................18
           3.4.1. A Use Case and Its Requirements ....................18
           3.4.2. 6LoWPAN Applicability ..............................19
      3.5. Vehicle Telematics ........................................20
           3.5.1. A Use Case and Its Requirements ....................21
           3.5.2. 6LoWPAN Applicability ..............................21
      3.6. Agricultural Monitoring ...................................22
           3.6.1. A Use Case and Its Requirements ....................22
           3.6.2. 6LoWPAN Applicability ..............................24
   4. Security Considerations ........................................25
   5. Acknowledgements ...............................................26
   6. References .....................................................26
      6.1. Normative References ......................................26
      6.2. Informative References ....................................27

1.  Introduction

   Low-power and lossy networks (LLNs) is the term commonly used to
   refer to networks made of highly constrained nodes (limited CPU,
   memory, power) interconnected by a variety of "lossy" links
   (low-power radio links or Power-Line Communication (PLC)).  They are
   characterized by low speed, low performance, low cost, and unstable
   connectivity.  A LoWPAN is a particular instance of an LLN, formed by
   devices complying with the IEEE 802.15.4 standard [5].  Their typical
   characteristics can be summarized as follows:

   o  Limited Processing Capability: The smallest common LoWPAN nodes
      have 8-bit processors with clock rates around 10 MHz.  Other
      models exist with 16-bit and 32-bit cores (typically ARM7),
      running at frequencies on the order of tens of MHz.





RFC 6568             6LoWPAN Design and Applications          April 2012


   o  Small Memory Capacity: The smallest common LoWPAN nodes have a few
      kilobytes of RAM with a few dozen kilobytes of ROM/flash memory.
      While memory sizes of nodes continue to grow (e.g., IMote has 64
      KB SRAM, 512 KB Flash memory), the nature of small memory capacity
      for LoWPAN nodes remains a challenge.

   o  Low Power: Wireless radios for LoWPANs are normally
      battery-operated.  Their radio frequency (RF) transceivers often
      have a current draw of about 10 to 30 mA, depending on the used
      transmission power level.  In order to reach common indoor ranges
      of up to 30 meters and outdoor ranges of 100 meters, the used
      transmission power is set around 0 to 3 dBm.  Depending on the
      processor type, there is an additional battery current consumption
      of the CPU itself, commonly on the order of tens of milliamperes.
      However, the CPU power consumption can often be reduced by a
      thousandfold when switching to sleep mode.

   o  Short Range: The Personal Operating Space (POS) defined by
      IEEE 802.15.4 implies a range of 10 meters.  For real
      implementations, the range of LoWPAN radios is typically measured
      in tens of meters, but can reach over 100 meters in line-of-sight
      situations.

   o  Low Bit Rate: The IEEE 802.15.4 standard defines a maximum
      over-the-air rate of 250 kbit/s, which is most commonly used in
      current deployments.  Alternatively, three lower data rates of 20,
      40, and 100 kbit/s are defined.

   As with any other LLN, a LoWPAN is not necessarily comprised of
   sensor nodes only, but may also consist of actuators.  For instance,
   in an agricultural environment, sensor nodes might be used to detect
   low soil humidity and then send commands to activate the sprinkler
   system.

   After defining common terminology in Section 1.1 and describing the
   characteristics of LoWPANs in Section 2, this document provides a
   list of use cases and market domains that may benefit and motivate
   the work currently done in the 6LoWPAN Working Group.













RFC 6568             6LoWPAN Design and Applications          April 2012


1.1.  Terminology

   Readers are expected to be familiar with all terms and concepts
   discussed in "IPv6 over Low-Power Wireless Personal Area Networks
   (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals" [2],
   and "Transmission of IPv6 Packets over IEEE 802.15.4 Networks" [3].

   Readers would benefit from reading 6LoWPAN Neighbor Discovery (ND)
   [6], 6LoWPAN header compression [7], and 6LoWPAN routing requirements
   [8] for details of 6LoWPAN work.

   This document defines the following terms:

   LC (Local Controller)

      A logical functional entity that performs the special role of
      coordinating and controlling its child nodes for local data
      aggregation, status management of local nodes, etc.  There may be
      multiple instances of local controller nodes in a LoWPAN.

   LBR (LoWPAN Border Router)

      A border router located at the junction of separate LoWPANs or
      between a LoWPAN and another IP network.  There may be one or more
      LBRs at the LoWPAN boundary.  An LBR is the responsible authority
      for IPv6 Prefix propagation for the LoWPAN it serves.  An isolated
      LoWPAN also contains an LBR in the network; the LBR provides the
      prefix(es) for the isolated network.

1.2.  Premise of Network Configuration

   The IEEE 802.15.4 standard distinguishes between two types of nodes
   -- reduced-function devices (RFDs) and full-function devices (FFDs).
   As this distinction is based on some Medium Access Control (MAC)
   features that are not always in use, we are not using this
   distinction in this document.

   6LoWPANs can be deployed using either route-over or mesh-under
   architectures.  As the choice of route-over or mesh-under does not
   affect the applicability of 6LoWPAN technologies to the use cases
   described in the document, we will use the term "6LoWPAN" to mean
   either a route-over or mesh-under network.

   Communication to corresponding nodes outside of the LoWPAN is
   becoming increasingly important for convenient data collection and
   remote-control purposes.  The intermediate LoWPAN nodes act as packet
   forwarders on the link layer or as LoWPAN routers, and connect the
   entire LoWPAN in a multi-hop fashion.  LBRs are used to interconnect



RFC 6568             6LoWPAN Design and Applications          April 2012


   a LoWPAN to other networks, or to form an extended LoWPAN by
   connecting multiple LoWPANs.  Before LoWPAN nodes obtain their IPv6
   addresses and the network is configured, each LoWPAN executes a
   link-layer configuration either by the mechanisms specified in [6] or
   by using a coordinator that is responsible for link-layer short
   address allocation.  However, the link-layer coordinator
   functionality is out of the scope of this document.  Details of
   address allocation in 6LoWPAN ND are in [6].

   A LoWPAN can be configured as mesh-under or route-over (see
   Terminology in [6]).  In a route-over configuration, multi-hop
   transmission is carried out by LoWPAN routers using IP routing.  In a
   mesh-under configuration, the link-local scope reaches to the
   boundaries of the LoWPAN, and multi-hop transmission is achieved by
   forwarding data at the link layer or in a 6LoWPAN adaptation layer.
   More information about mesh-under and route-over is in [6] and [8].

2.  Design Space

   Inspired by [9], this section lists the dimensions used to describe
   the design space of wireless sensor networks in the context of the
   6LoWPAN Working Group.  The design space is already limited by the
   unique characteristics of a LoWPAN (e.g., low power, short range, low
   bit rate), as described in [2].  The possible dimensions for scenario
   categorization used in this document are described as follows:

   o  Deployment: LoWPAN nodes can be scattered randomly, or they may be
      deployed in an organized manner in a LoWPAN.  The deployment can
      occur at once, or as an iterative process.  The selected type of
      deployment has an impact on node density and location.  This
      feature affects how to organize (manually or automatically) the
      LoWPAN and how to allocate addresses in the network.

   o  Network Size: The network size takes into account nodes that
      provide the intended network capability.  The number of nodes
      involved in a LoWPAN could be small (ten), moderate (several
      hundred), or large (over a thousand).

   o  Power Source: The power source of nodes, whether the nodes are
      battery-powered or mains-powered, influences the network design.
      The power may also be harvested from solar cells or other sources
      of energy.  Hybrid solutions are possible where only part of the
      network is mains-powered.

   o  Connectivity: Nodes within a LoWPAN are considered "always
      connected" when there is a network connection between any two
      given nodes.  However, due to external factors (e.g., extreme
      environment, mobility) or programmed disconnections (e.g.,



RFC 6568             6LoWPAN Design and Applications          April 2012


      sleeping mode), network connectivity can be from "intermittent"
      (i.e., regular disconnections) to "sporadic" (i.e., almost always
      disconnected).  Differences in L2 duty-cycling settings may
      additionally impact connectivity due to highly varying bit rates.

   o  Multi-Hop Communication: The multi-hop communication factor
      highlights the number of hops that have to be traversed to reach
      the edge of the network or a destination node within it.  A single
      hop may be sufficient for simple star topologies, but a multi-hop
      communication scheme is required for more elaborate topologies,
      such as meshes or trees.  In previous work on LoWPANs by academia
      and industry, various routing mechanisms were introduced, such as
      data-centric, event-driven, address-centric, localization-based,
      geographical routing, etc.  This document does not make use of
      such a fine granularity but rather uses topologies and single/
      multi-hop communication.

   o  Traffic Pattern: Several traffic patterns may be used in LoWPANs
      -- Point-to-Multipoint (P2MP), Multipoint-to-Point (MP2P), and
      Point-to-Point (P2P), to name a few.

   o  Security Level: LoWPANs may carry sensitive information and
      require high-level security support where the availability,
      integrity, and confidentiality of the information are crucial.

   o  Mobility: Inherent to the wireless characteristics of LoWPANs,
      nodes could move or be moved around.  Mobility can be an induced
      factor (e.g., sensors in an automobile) -- and hence not
      predictable -- or a controlled characteristic (e.g., pre-planned
      movement in a supply chain).

   o  Quality of Service (QoS): QoS issues in LoWPANs may be very
      different from the traditional end-to-end QoS, as in LoWPAN
      applications one end is not a single sensor node but often a group
      of sensor nodes.  Parameters for QoS should consider collective
      data for latency, packet loss, data throughput, etc.  In addition,
      QoS requirements can be different based on the data delivery
      model, such as event-driven, query-driven, continuous real-time,
      or continuous non-real-time; these delivery models usually coexist
      in LoWPAN applications.  QoS issues in LoWPANs are more likely
      related to corresponding application-specific data delivery
      requirements within resource-constrained LoWPANs.









RFC 6568             6LoWPAN Design and Applications          April 2012


3.  Application Scenarios

   This section lists a fundamental set of LoWPAN application scenarios
   in terms of system design.  A complete list of practical use cases is
   not the objective of this document.

3.1.  Industrial Monitoring

   LoWPAN applications for industrial monitoring can be associated with
   a broad range of methods to increase productivity, energy efficiency,
   and safety of industrial operations in engineering facilities and
   manufacturing plants.  Many companies currently use time-consuming
   and expensive manual monitoring to predict failures and to schedule
   maintenance or replacements in order to avoid costly manufacturing
   downtime.  LoWPANs can be inexpensively installed to provide more
   frequent and more reliable data.  The deployment of LoWPANs can
   reduce equipment downtime and eliminate manual equipment monitoring
   that is costly to perform.  Additionally, data analysis functionality
   can be placed into the network, eliminating the need for manual data
   transfer and analysis.

   Industrial monitoring can be largely split into the following
   application fields:

   o  Process Monitoring and Control: This application field combines
      advanced energy metering and sub-metering technologies with
      wireless sensor networking in order to optimize factory
      operations, reduce peak demand, ultimately lower costs for energy,
      avoid machine downtimes, and increase operation safety.

      A plant's monitoring boundary often does not cover the entire
      facility but only those areas considered critical to the process.
      Wireless connectivity that is easy to install extends this line to
      include peripheral areas and process measurements that were
      previously infeasible or impractical to reach with wired
      connections.

   o  Machine Surveillance: This application field ensures product
      quality and efficient and safe equipment operation.  Critical
      equipment parameters such as vibration, temperature, and
      electrical signature are analyzed for abnormalities that are
      suggestive of impending equipment failure.









RFC 6568             6LoWPAN Design and Applications          April 2012


   o  Supply Chain Management and Asset Tracking: With the retail
      industry being legally responsible for the quality of sold goods,
      early detection of inadequate storage conditions with respect to
      temperature will reduce the risk and cost of removing products
      from the sales channel.  Examples include container shipping,
      product identification, cargo monitoring, distribution, and
      logistics.

   o  Storage Monitoring: This application field includes sensor systems
      designed to prevent releases of regulated substances into ground
      water, surface water, and soil.  This application field may also
      include theft/tampering prevention systems for storage facilities
      or other infrastructure, such as pipelines.

3.1.1.  A Use Case and Its Requirements

   Example: Hospital Storage Rooms

   In a hospital, maintenance of the right temperature in storage rooms
   is very critical.  Red blood cells need to be stored at 2 to 6
   degrees Celsius, blood platelets at 20 to 24 degrees C, and blood
   plasma below -18 degrees C.  For anti-cancer medicine, maintaining a
   humidity of 45% to 55% is required.  Storage rooms have temperature
   sensors and humidity sensors every 25 to 100 m, based on the floor
   plan and the location of shelves, as indoor obstacles distort the
   radio signals.  At each blood pack, a sensor tag can be installed to
   track the temperature during delivery.  A LoWPAN node is installed in
   each container of a set of blood packs.  In this case, highly dense
   networks must be managed.

   All nodes are statically deployed and manually configured with either
   a single- or multi-hop connection.  Different types of LoWPAN nodes
   are configured based on the service and network requirements.  In
   particular, LCs play a role in aggregation of the sensed data from
   blood packs.  In the extended networks, more than one LoWPAN LC can
   be installed in a storage room.  In the case that the sensed data
   from an individual node is urgent event-driven data such as outrange
   of temperature or humidity, it will not be accumulated (and further
   delayed) by the LCs but immediately relayed.

   All LoWPAN nodes do not move unless the blood packs or a container of
   blood packs is moved.  Moving nodes get connected by logical
   attachment to a new LoWPAN.  When containers of blood packs are
   transferred to another place in the hospital or by ambulance, the
   LoWPAN nodes on the containers associate to a new LoWPAN.






RFC 6568             6LoWPAN Design and Applications          April 2012


   This type of application works based on both periodic and
   event-driven notifications.  Periodic data is used for monitoring
   temperature and humidity in the storage rooms.  The data over or
   under a predefined threshold is meaningful to report.  Blood cannot
   be used if it is exposed to the wrong environment for about 30
   minutes.  Thus, event-driven data sensed on abnormal occurrences is
   time-critical and requires secure and reliable transmission.

   LoWPANs must be provided with low installation and management costs,
   and for the transportation of blood containers, precise location
   tracking of containers is important.  The hospital network manager or
   staff can be provided with an early warning of possible chain
   ruptures, for example, by conveniently accessing comprehensive online
   reports and data management systems.

   Dominant parameters in industrial monitoring scenarios:

   o  Deployment: Pre-planned, manually attached.

   o  Network Size: Medium to large size, high node density.

   o  Power Source: Battery-operated most of the time.

   o  Connectivity: Always on for crucial processes.

   o  Multi-Hop Communication: Multi-hop networking.

   o  Traffic Pattern: P2P (actuator control), MP2P (data collection).

   o  Security Level: Business-critical.  Secure transmission must be
      guaranteed.

   o  Mobility: None (except for asset tracking).

   o  QoS: Important for time-critical event-driven data.

   o  Other Issues: Sensor network management, location tracking,
      real-time early warning.

3.1.2.  6LoWPAN Applicability

   The network configuration of the above use case can differ
   substantially by system design.  As illustrated in Figure 1, the
   simplest way is to build a star topology inside of each storage room.
   Based on the layout and size of the storage room, the LoWPAN can be
   configured in a different way -- mesh topology -- as shown in
   Figure 2.




RFC 6568             6LoWPAN Design and Applications          April 2012


   Each LoWPAN node may reach the LBR by a predefined routing/forwarding
   mechanism.  Each LoWPAN node configures its link-local address and
   obtains a prefix from its LBR by a 6LoWPAN ND procedure [6].  LoWPAN
   nodes need to build a multi-hop connection to reach the LCs and LBR.

   Secure data transmission and authentication are crucial in a hospital
   scenario, to prevent personal information from being retrieved by an
   adversary.  Confidential data must be encrypted not only in
   transmission, but also when stored on nodes, because nodes can
   potentially be stolen.

   The data volume is usually not so large in this case, but is
   sensitive to delay.  Data aggregators can be installed for each
   storage room, or just one data aggregator can collect all data.  To
   make a light transmission, UDP is likely to be chosen, but a secure
   transmission and security mechanism must be added.  To increase
   security, link-layer mechanisms and/or additional security mechanisms
   should be used.

   Because a failure of a LoWPAN node can critically affect the storage
   of the blood packs, network management is important in this use case.
   A lightweight management mechanism must be provided for this
   management.

   The service quality of this case is highly related to effective
   handling of event-driven data that is delay intolerant and mission
   critical.  Wrong humidity and wrong temperature are events that need
   to be detected as quickly and reliably as possible.  It is important
   to provide efficient resource usage for such data with consideration
   of minimal usage of energy.  Energy-aware QoS support in wireless
   sensor networks is a challenging issue [12].  It can be considered to
   provide appropriate data aggregation for minimizing delay and
   maximizing accuracy of delivery by using power-affluent nodes, or can
   be aided by middleware or other types of network elements.

   When a container is moved out of the storage room and connected to
   another hospital system (if the hospital buildings are fully or
   partly covered with LoWPANs), a mechanism to rebind to a new parent
   node and a new LoWPAN must be supported.  In the case that it is
   moved by an ambulance, it will be connected to an LBR in the vehicle.
   This type of mobility is supported by the 6LoWPAN ND and routing
   mechanism.

   LoWPANs must be provided with low installation and management costs,
   providing benefits such as reduced inventory, and precise location
   tracking of containers and mobile equipment (e.g., beds moved in the
   hospital, ambulances).




RFC 6568             6LoWPAN Design and Applications          April 2012


                       LBR
                        |                   LBR: LoWPAN Border Router
           LC----------LC----------LC        LC: Local Controller node
          / | \       / | \       / | \          (Data Aggregator)
         n  n  n     n  n  n     n  n  n      n: LoWPAN node

            Figure 1: Storage Rooms with a Simple Star Topology

           +------------+-----------+
           |            |           |         LBR: LoWPAN Border Router
          LBR          LBR        LBR (LC)     LC: Local Controller node
           |            |           |              (Data Aggregator)
          LC - n       LC - n       n           n: LoWPAN node
        /  |   |        |   |      / \
       n   n - LC   n - n - n     n - n
       |       | \          |     |\
       n       n  n - n     n     n n

               Figure 2: Storage Rooms with a Mesh Topology

3.2.  Structural Monitoring

   Intelligent monitoring in facility management can make safety checks
   and periodic monitoring of the architecture status highly efficient.
   Mains-powered nodes can be included in the design phase of
   construction, or battery-equipped nodes can be added afterwards.  All
   nodes are static and manually deployed.  Some data is not critical
   for security protection (such as periodic or query-driven
   notification of normal room temperature), but event-driven emergency
   data (such as a fire alarm) must be handled in a very critical
   manner.

3.2.1.  A Use Case and Its Requirements

   Example: Bridge Safety Monitoring

   A 1000-m-long concrete bridge with 10 pillars is described.  Each
   pillar and the bridge body contain 5 sensors to measure the water
   level, and 5 vibration sensors are used to monitor its structural
   health.  The LoWPAN nodes are deployed to have 100-m line-of-sight
   distance from each other.  All nodes are placed statically and
   manually configured with a single-hop connection to the local
   coordinator.  All LoWPAN nodes are immobile while the service is
   provided.  Except for the pillars, there are no special obstacles
   causing attenuation of node signals, but careful configuration is
   needed to prevent signal interference between LoWPAN nodes.





RFC 6568             6LoWPAN Design and Applications          April 2012


   The physical network topology is changed in case of node failure.  On
   the top part of each pillar, a sink node is placed to collect the
   sensed data.  The sink nodes of each pillar become data-gathering
   points of the LoWPAN hosts at the pillar and act as local
   coordinators.

   This use case can be extended to medium or large sensor networks to
   monitor a building or, for instance, the safety status of highways
   and tunnels.  Larger networks of the same kind still have similar
   characteristics, such as static node placement and manual deployment;
   depending on the blueprint of the structure, mesh topologies will be
   built with mains-powered relay points.  Periodic, query-driven, and
   event-driven real-time data gathering is performed, and the emergency
   event-driven data must be delivered without delay.

   Dominant parameters in structural monitoring applications:

   o  Deployment: Static, organized, pre-planned.

   o  Network Size: Small (dozens of nodes) to large.

   o  Power Source: Mains-powered nodes are mixed with battery-powered
      nodes.  (Mains-powered nodes will be used for local coordination
      or relays.)

   o  Connectivity: Always connected, or intermittent via sleeping mode
      scheduling.

   o  Multi-Hop Communication: It is recommended that multi-hop mesh
      networking be supported.

   o  Traffic Pattern: MP2P (data collection), P2P (localized querying).

   o  Security Level: Safety-critical.  Secure transmission must be
      guaranteed.  Only authenticated users must be able to access and
      handle the data.

   o  Mobility: None.

   o  QoS: Emergency notification (fire, over-threshold vibrations,
      water level, etc.) is required to have priority of delivery and
      must be transmitted in a highly reliable manner.

   o  Other Issues: Accurate sensing and reliable transmission are
      important.  In addition, sensor status reports should be
      maintained in a reliable monitoring system.





RFC 6568             6LoWPAN Design and Applications          April 2012


3.2.2.  6LoWPAN Applicability

   The network configuration of this use case can be done via simple
   topologies; however, there are many extended use cases for more
   complex structures.  The example bridge monitoring case may be the
   simplest case.  (An example topology is illustrated in Figure 3.)

   The LoWPAN nodes are installed in place after manual optimization of
   their location.  As the communication of the leaf LoWPAN nodes may be
   limited to the data-gathering points, both 16-bit and 64-bit
   addresses can be used for IPv6 link-local addresses [3].

   Each pillar might have one LC for data collection.  Communication
   schedules should be set up between leaf nodes and their LC to
   efficiently gather the different types of sensed data.  Each data
   packet may include meta-information about its data, or the type of
   sensors could be encoded in its address during address allocation.

   This type of application works based on periodic, query-driven, and
   event-driven notifications.  The data over or under a predefined
   threshold is meaningful to report.  Event-driven data sensed on
   abnormal occurrences is time-critical and requires secure and
   reliable transmission.  Alternatively, for energy conservation, all
   nodes may have periodic and long sleep modes but wake up on certain
   events.  To ensure the reliability of such emergency event-driven
   data, such data is immediately relayed to a power-affluent or
   mains-powered node that usually takes a LoWPAN router role and does
   not go into a long sleep status.  The data-gathering entity can be
   programmed to trigger actuators installed in the infrastructure when
   a certain threshold value has been reached.

   Due to the safety-critical data of the structure, authentication and
   security are important issues here.  Only authenticated users must be
   allowed to access the data.  Additional security should be provided
   at the LBR for restricting access from outside of the LoWPAN.  The
   LBR may take charge of authentication of LoWPAN nodes.  Reliable and
   secure data transmission must be guaranteed.

   LBR - LC ----- LC ------ LC           LBR: LoWPAN Border Router
         /|        |        |            LC: Local Controller node
        n n    n - n - n    n - n        n: LoWPAN node
          /\       |   |    |   |
         n  n      n - n    n - n - n

                  Figure 3: A Bridge Monitoring Scenario






RFC 6568             6LoWPAN Design and Applications          April 2012


3.3.  Connected Home

   The "Connected" Home or "Smart" home is without doubt an area where
   LoWPANs can be used to support an increasing number of services:

   o  Home safety/security

   o  Home automation and control

   o  Healthcare (see Section 3.4)

   o  Smart appliances and home entertainment systems

   In home environments, LoWPANs typically comprise a few dozen and,
   probably in the near future, a few hundred nodes of various types:
   sensors, actuators, and connected objects.

3.3.1.  A Use Case and Its Requirements

   Example: Home Automation

   The home automation and control system LoWPAN offers a wide range of
   services: local or remote access from the Internet (via a secured
   edge router) to monitor the home (temperature, humidity, activation
   of remote video surveillance, status of the doors (locked or open),
   etc.), as well as home control (activate air conditioning/heating,
   door locks, sprinkler systems, etc.).  Fairly sophisticated systems
   can also optimize the level of energy consumption, thanks to a wide
   range of input from various sensors connected to the LoWPAN -- light
   sensors, presence detection, temperature, etc. -- in order to control
   electric window shades, chillers, air flow control, air conditioning,
   and heating.

   With the emergence of "Smart Grid" applications, the LoWPAN may also
   have direct interactions with the Grid itself via the Internet to
   report the amount of kilowatts that could be load-shed (home to Grid)
   and to receive dynamic load-shedding information if/when required
   (Grid to home): This application is also referred to as a
   Demand-Response application.  Another service, known as Demand-Side
   Management (DSM), could be provided by utilities to monitor and
   report to the user his energy consumption, with a fine granularity
   (on a per-device basis).  A user can also receive other inputs from
   the utility, such as dynamic pricing; according to local policy, the
   utility may then turn some appliances on or off in order to reduce
   its energy bill.






RFC 6568             6LoWPAN Design and Applications          April 2012


   In terms of home safety and security, the LoWPAN is made up of motion
   sensors and audio sensors, sensors at doors and windows, and video
   cameras; additional sensors can be added for safety (gas, water, CO,
   Radon, smoke detection).  The LoWPAN is typically comprised of a few
   dozen nodes forming an ad hoc network with multi-hop routing, since
   the nodes may not be in direct range.  It is worth mentioning that
   the number of devices tends to grow, considering the number of new
   applications for the home.  In its simplest form, all nodes are
   static and communicate with a central control module, but more
   sophisticated scenarios may also involve inter-device communication.
   For example, a motion/presence sensor may send a multicast message to
   a group of lights to be switched on, or a video camera may be
   activated to send a video stream to a cell phone via a gateway.

   Ergonomics in connected homes is key, and the LoWPAN must be
   self-managed and easy to install.  Traffic patterns may vary greatly,
   depending on applicability; so does the level of reliability and QoS
   expected from the LoWPAN.  Humidity sensing is typically not critical
   and requires no immediate action, whereas tele-assistance or gas-leak
   detection is critical and requires a high degree of reliability.
   Furthermore, although some actions may not involve critical data, the
   response time and network delays must still be on the order of a few
   hundred milliseconds for optimal user experience (e.g., use a remote
   control to switch a light on).  A minority of nodes are mobile (with
   slow motion).  With the emergence of energy-related applications, it
   becomes crucial to preserve data confidentiality.  Connected home
   LoWPANs usually do not require multi-topology or QoS routing.  Fairly
   simple QoS mechanisms are enough for handling emergency data; they
   can be programmed to alarm via actuators or to operate sprinklers.

   Dominant parameters for home automation applications:

   o  Deployment: Multi-hop topologies.

   o  Network Size: Medium number of nodes, potentially high density.

   o  Power Source: Mix of battery-powered and mains-powered devices.

   o  Connectivity: Intermittent (usage-dependent sleep modes).

   o  Multi-Hop Communication: No requirement for multi-topology or QoS
      routing.

   o  Traffic Pattern: P2P (inter-device), P2MP, and MP2P (polling).

   o  Security Level: Authentication and encryption required.





RFC 6568             6LoWPAN Design and Applications          April 2012


   o  Mobility: Some degree of mobility.

   o  QoS: Support of limited QoS for emergency data (alarm).

3.3.2.  6LoWPAN Applicability

   In the home automation use case, the network topology is made of a
   mix of battery-operated and mains-powered nodes that communicate with
   each other.  An LBR provides connectivity to the outside world for
   control management (Figure 4).

   In the home network, installation and management must be extremely
   simple for the user.  Link-local IPv6 addresses can be used by nodes
   with no external communication, and the LBR allocates routable
   addresses to communicate with other LoWPAN nodes not reachable over a
   single radio transmission.

                             n --- n
                             |     |           LBR: LoWPAN Border Router
   Internet/ ----- LBR/LC -- n --- n ---- LC   LC: Local Controller node
   Utility network   |      |            /|\   n: LoWPAN node
                     n ---- n           n n n

      (outside)       (home automation system)

                    Figure 4: Home Automation Scenario

   In some scenarios, traffic will be sent to a LC for processing; the
   LC may in turn decide on local actions (switch a light on, ...).  In
   other scenarios, all devices will send their data to the LCs, which
   in turn may also act as the LBR for data processing and potential
   relay of data outside of the LoWPAN.  It does not mean that all
   devices communicate with each other via the LC and LBR.  For the sake
   of illustration, some of the data may be processed to trigger local
   action (e.g., switch off an appliance), simply store and send data
   once enough data has been accumulated (e.g., energy consumption for
   the past 6 hours for a set of appliances), or trigger an alarm that
   is immediately sent to a datacenter (e.g., gas-leak detection).

   Although in the majority of cases nodes within the LoWPAN will be in
   direct range, some nodes will reach the LBR/LC with a path of 2-3
   hops (with the emergence of several low-power media, such as
   low-power PLC) in which case LoWPAN routers will be deployed in the
   home to interconnect the various IPv6 links.







RFC 6568             6LoWPAN Design and Applications          April 2012


   The home LoWPAN must be able to provide extremely reliable
   communication in support of some specific applications (e.g., fire,
   gas-leak detection, health monitoring), whereas other applications
   may not be critical (e.g., humidity monitoring).  Such emergency data
   has the same QoS issues as does event-driven data in other
   applications and can be delivered by pre-defined paths through
   mains-powered nodes without being stored in intermediate nodes such
   as LCs.  Similarly, some information may require the use of security
   mechanisms for authentication and confidentiality.

3.4.  Healthcare

   LoWPANs are envisioned to be heavily used in healthcare environments.
   They have a high potential for easing the deployment of new services
   by getting rid of cumbersome wires and simplifying patient care in
   hospitals and at home (home care).  In healthcare environments,
   delayed or lost information may be a matter of life or death.

   Various systems, ranging from simple wearable remote controls for
   tele-assistance or intermediate systems with wearable sensor nodes
   monitoring various metrics to more complex systems for studying life
   dynamics, can be supported by LoWPANs.  In the latter category, a
   large amount of data from various LoWPAN nodes can be collected:
   movement pattern observation, checks that medicaments have been
   taken, object tracking, and more.  An example of such a deployment is
   described in [10] using the concept of "personal networks".

3.4.1.  A Use Case and Its Requirements

   Example: Healthcare at Home by Tele-Assistance

   A senior citizen who lives alone wears one to several wearable LoWPAN
   nodes to measure heartbeat, pulse rate, etc.  Dozens of LoWPAN nodes
   are densely installed at home for movement detection.  An LBR at home
   will send the sensed information to a connected healthcare center.
   Portable base stations with LCDs may be used to check the data at
   home, as well.  The different roles of devices have different duty
   cycles, which affect node management.

   Multipath interference may often occur due to the mobility of
   patients at home, where there are many walls and obstacles.  Even
   during sleep, the change of body position may affect radio
   propagation.

   Data is gathered in both periodic and event-driven fashion.  In this
   application, event-driven data can be very time-critical.  Thus,
   real-time and reliable transmission must be guaranteed.




RFC 6568             6LoWPAN Design and Applications          April 2012


   Privacy also becomes a serious issue in this case, as the sensed data
   is very personal.  A small set of secret keys can be shared within
   the sensor nodes during bootstrapping procedures in order to build a
   secure link without using much memory and energy.  In addition,
   different data will be provided to the hospital system from that
   given to a patient's family members.  Role-based access control is
   needed to support such services; thus, support of authorization and
   authentication is important.

   Dominant parameters in healthcare applications:

   o  Deployment: Pre-planned.

   o  Network Size: Small, high node density.

   o  Power Source: Hybrid.

   o  Connectivity: Always on.

   o  Multi-Hop Communication: Multi-hop for home-care devices;
      patient's body network is star topology.  Multipath interference
      due to walls and obstacles at home must be considered.

   o  Traffic Pattern: MP2P/P2MP (data collection), P2P (local
      diagnostic).

   o  Security Level: Data privacy and security must be provided.
      Encryption is required.  It is required that role-based access
      control be supported by a lightweight authentication mechanism.

   o  Mobility: Moderate (patient's mobility).

   o  QoS: High level of reliability support (life-or-death
      implication), role-based.

   o  Other Issues: Plug-and-play configuration is required for mainly
      non-technical end-users.  Real-time data acquisition and analysis
      are important.  Efficient data management is needed for various
      devices that have different duty cycles, and for role-based data
      control.  Reliability and robustness of the network are also
      essential.

3.4.2.  6LoWPAN Applicability

   In this use case, the local network size is rather small (say, 10
   nodes or less).  The home care system is statically configured with
   multi-hop paths, and the patient's body network can be built as a
   star topology.  The LBR at home is the sink node in the routing path



RFC 6568             6LoWPAN Design and Applications          April 2012


   from sources on the patient's body.  A plug-and-play configuration is
   required.  As the communication of the system is limited to a home
   environment, both 16-bit and 64-bit addresses can be used for IPv6
   link-local addresses [3].  An example topology is provided in
   Figure 5.

   The patient's body network can be simply configured as a star
   topology with a LC dealing with data aggregation and dynamic network
   attachment when the patient moves around at home.  As multipath
   interference may often occur due to the patient's mobility at home,
   the deployment of LoWPAN nodes and transmission paths should be well
   considered.  At home, some nodes can be installed with
   power-affluence status, and those LoWPAN nodes can be used for
   relaying points or data aggregation points.

   The sensed information must be maintained with the identification of
   the patient, no matter whether the patient visits the connected
   hospital or stays at home.  If the patient's LoWPAN uses a globally
   unique IPv6 address, the address can be used for patient
   identification.  However, this incurs a cost in terms of privacy and
   security.  The hospital LoWPAN to which the patient's information is
   transferred needs to operate an additional identification system,
   together with a strong authority and authentication mechanism.  The
   connection between the LBR at home and the LBR at the hospital must
   be reliable and secure, as the data is privacy-critical.  To achieve
   this, an additional policy for security between the two LoWPANs is
   recommended.

                         n - n               I: Internet
                         |   |             LBR: Edge Router
      LBR --- I -- LBR - n - n - LC         LC: Local Controller node
      /|\           |    |       /|\         n: LoWPAN node
    .. . ..         n -- n      n n n

   (hospital)       (home system)  (patient)

                  Figure 5: A Mobile Healthcare Scenario

3.5.  Vehicle Telematics

   LoWPANs play an important role in intelligent transportation systems.
   Incorporated into roads, vehicles, and traffic signals, they
   contribute to the improvement of safety in transportation systems.
   Through traffic or air-quality monitoring, they increase the
   possibility of traffic flow optimization, and they help reduce road
   congestion.





RFC 6568             6LoWPAN Design and Applications          April 2012


3.5.1.  A Use Case and Its Requirements

   Example: Telematics

   As shown in Figure 6, LoWPAN nodes for motion monitoring are
   incorporated into roads during road construction.  When a car passes
   over these nodes, it is then possible to track, for safety purposes,
   the trajectory (path) and velocity of the car.

   The lifetime of LoWPAN nodes incorporated into roads is expected to
   be as long as the lifetime of the roads (about 10 years).  Multi-hop
   communication is possible between LoWPAN nodes, and the network
   should be able to cope with the deterioration over time of node
   density due to power failures.  Sink nodes placed at the side of the
   road are most likely mains-powered; LoWPAN nodes in the roads run on
   batteries.  Power-saving schemes might intermittently disconnect the
   nodes.  A rough estimate of 4 nodes per square meter is needed.
   Other applications may involve car-to-car communication for increased
   road safety.

   Dominant parameters in vehicle telematics applications:

   o  Deployment: Pre-planned (road, vehicle).

   o  Network Size: Large (road infrastructure), small (vehicle).

   o  Power Source: Hybrid.

   o  Connectivity: Intermittent.

   o  Multi-Hop Communication: Multi-hop, especially ad hoc.

   o  Traffic Pattern: Mostly MP2P, P2MP.

   o  Security Level: Handling physical damage and link failure.

   o  Mobility: None (road infrastructure), high (vehicle).

3.5.2.  6LoWPAN Applicability

   For this use case, the network topology includes fixed LBRs that are
   mains-powered and have a connection to high-speed networks (e.g., the
   Internet) in order to reach the transportation control center
   (Figure 6).  These LBRs may be logically combined with a LC as a data
   sink to gather sensed data from a number of LoWPAN nodes inserted in
   the road pavement.  In the road infrastructure, a LoWPAN with one LBR
   forms a fixed network, and the LoWPAN nodes are installed by manual
   optimization of their location.



RFC 6568             6LoWPAN Design and Applications          April 2012


        +-----+
        | LBR |--------------------------- LBR ...
        +-----+     (at the roadside)
    -------|------------------------------
           |
      n -- n --- n --- n   +---|---+       LBR: LoWPAN Border Router
          / \          |   | n-n-n |         n: LoWPAN node
         n   n         n   +---|---+
                             (cars)
    --------------------------------------

                       Figure 6: Telematics Scenario

   Given the fact that nodes are incorporated into the road, tampering
   with sensors is difficult for an adversary.  However, the application
   must be robust against possible attacks and node failures.  Sensed
   data should thus be used primarily for monitoring purposes, not to
   instruct (and potentially mislead) traffic participants.

3.6.  Agricultural Monitoring

   Accurate temporal and spatial monitoring can significantly increase
   agricultural productivity.  Due to natural limitations, such as a
   farmer's inability to check crops at all times of the day, or
   inadequate measurement tools, luck often plays too large a role in
   the success of harvests.  Using a network of strategically placed
   sensors, indicators such as temperature, humidity, and soil condition
   can be automatically monitored without labor-intensive field
   measurements.  For example, sensor networks could provide precise
   information about crops in real time, enabling businesses to reduce
   water, energy, and pesticide usage and enhancing environmental
   protection.  The sensing data can be used to find optimal
   environments for the plants.  In addition, the data on planting
   conditions can be saved by sensor tags, which can be used in
   supply-chain management.

3.6.1.  A Use Case and Its Requirements

   Example: Automated Vineyard

   In a vineyard of medium to large geographical size, between 50 and
   100 LC nodes are manually deployed in order to provide full signal
   coverage over the study area.  An additional 100 to 1000 leaf nodes
   with (possibly heterogeneous) specialized sensors (i.e., humidity,
   temperature, soil condition, sunlight) are attached to the LCs in
   local wireless star topologies, periodically reporting measurements
   to the associated LCs.  For example, in a 20-acre vineyard with 8
   parcels of land, 10 LoWPAN nodes are placed within each parcel to



RFC 6568             6LoWPAN Design and Applications          April 2012


   provide readings on temperature and soil moisture.  The LoWPAN nodes
   are able to support a multi-hop forwarding/routing scheme to enable
   data transmission to a sink node at the edge of the vineyard.  Each
   of the 8 parcels contains one data aggregator to collect the sensed
   data.

   Localization is important for this type of LoWPAN when installed in a
   geographically large area, in order to pin down where an event
   occurred, and to combine gathered data with the actual positions of
   the devices.  Using manual deployment, device addresses can be used
   for identifying their position and localization.  For randomly
   deployed nodes, a localization algorithm needs to be applied.

   There might be various types of sensor devices deployed in a single
   LoWPAN, each providing raw data with different semantics.  Thus, an
   additional method is required to correctly interpret sensor readings.
   Each data packet may include meta-information about its data, or the
   type of sensor could be encoded in its address during address
   allocation.

   Dominant parameters in agricultural monitoring:

   o  Deployment: Pre-planned.

      The nodes are installed outdoors or in a greenhouse, with high
      exposure to water, soil, and dust, in dynamic environments of
      moving people and machinery, and with growing crops and foliage.
      LoWPAN nodes can be deployed in a predefined manner, with
      consideration given to harsh environments.

   o  Network Size: Medium to large, low to medium density.

   o  Power Source: All nodes are battery-powered except the sink, or
      energy harvesting.

   o  Connectivity: Intermittent (many sleeping nodes).

   o  Multi-Hop Communication: Mesh topology with local star
      connections.

   o  Traffic Pattern: Mainly MP2P/P2MP.  P2P actuator triggering.

   o  Security Level: Depends on purpose of the business.  Lightweight
      security or simple shared-key management can be used, depending on
      the purpose of the business.






RFC 6568             6LoWPAN Design and Applications          April 2012


   o  Mobility: All static.

   o  Other Issues: Time synchronization among sensors is required, but
      the traffic interval may not be frequent (e.g., once every 30 to
      60 minutes).

3.6.2.  6LoWPAN Applicability

   The network configuration in this use case might, in the simplest
   case, look like the configuration illustrated in Figure 7.  This
   static scenario consists of one or more fixed LBRs that are
   mains-powered and have a high-bandwidth connection to a backbone
   link, which might be placed in a control center or connected to the
   Internet.  The LBRs are strategically located at the border of
   vineyard parcels, acting as data sinks.  A number of LCs are placed
   along a row of plants with individual LoWPAN nodes spread around
   them.

   While the LBRs implement the IPv6 Neighbor Discovery protocol
   (RFC 4861 [1]) to connect to the outside of the LoWPAN, the LoWPAN
   nodes operate a more energy-conserving ND described in [6], which
   includes basic bootstrapping and address assignment.  Each LBR can
   have predefined forward management information to a central data
   aggregation point, if necessary.

   LoWPAN nodes may send event-driven notifications when readings exceed
   certain thresholds, such as low soil humidity, which may
   automatically trigger a water sprinkler in the local environment.
   For increased energy efficiency, all LoWPAN nodes are in periodic
   sleep state.  However, the LCs need to be aware of sudden events from
   the leaf nodes.  Their sleep periods should therefore be set to
   shorter intervals.  Communication schedules must be set up between
   master and leaf nodes, and time synchronization is needed to account
   for clock drift.

   Also, the result of data collection may activate actuators.  Context
   awareness, node identification, and data collection at the
   application level are necessary.













RFC 6568             6LoWPAN Design and Applications          April 2012


        I
        |
        |    n n n   n n n   n n n         I: Internet
        |     \|/     \|/     \|/        LBR: LoWPAN Border Router
       LBR----LC------LC------LC          LC: Local Controller node
        |     /|\     /|\     /|\          n: LoWPAN node
        |    n n n   n n n   n n n
        |
   LBR
       ...

                   Figure 7: Automated Vineyard Scenario

4.  Security Considerations

   Relevant security considerations are listed by application scenario
   in Section 3.  The security considerations in RFC 4919 [2] and
   RFC 4944 [3] apply as well.

   The physical exposure of LoWPAN nodes (especially in outdoor
   networks) allows an adversary to capture, clone, tamper with, or even
   destroy these devices.  Given the safety issues involved in some use
   cases, these threats place high demands for resiliency and
   survivability upon the LoWPAN.  The generally wireless channels of
   LoWPANs are susceptible to several security threats.  Without proper
   security measures, confidential information might be snooped by a
   "man in the middle".  An attacker might also modify or introduce data
   packets into the network -- for example, to manipulate sensor
   readings or to take control of sensors and actuators.  This
   specification expects that the link layer is sufficiently protected,
   either by means of physical or IP security for the backbone link or
   with MAC sublayer cryptography.  However, link-layer encryption and
   authentication may not be sufficient to provide confidentiality,
   authentication, integrity, and freshness to both data and signaling
   packets.

   Due to their low-power nature, LoWPANs are especially vulnerable to
   denial-of-service (DoS) attacks.  Example DoS attacks include
   attempts to drain a node's battery by excessive querying or to
   introduce a high-power jamming signal that makes LoWPAN nodes
   dysfunctional.  Security solutions must therefore be lightweight and
   support node authentication, so that message integrity can be
   guaranteed and misbehaving nodes can be denied participation in the
   network.  A node must authenticate itself to trusted nodes before
   taking part in the LoWPAN.






RFC 6568             6LoWPAN Design and Applications          April 2012


   Considering the power constraints and limited processing capabilities
   of IEEE 802.15.4 devices, IPsec is computationally expensive;
   Internet key exchange (IKEv2) messaging as described in [4] is not
   suited for LoWPANs, as the amount of signaling in these networks
   should be minimized.  Thus, LoWPANs may need to define their own
   key-management method that requires minimum overhead in terms of
   packet size and message exchange [11].  IPsec provides authentication
   and confidentiality between end nodes and across multiple LoWPAN
   links, and may be useful only when two nodes want to apply security
   to all exchanged messages.  However, in many cases, the security may
   be requested at the application layer as needed, while other messages
   can flow in the network without security overhead.  Recent work [13]
   shows some promise for minimal IKEv2 implementations.

   Security requirements may differ by use case.  For example,
   industrial and structural monitoring applications are safety-critical
   and secure transmission must be guaranteed, so that only
   authenticated users are able to access and handle the data.  In
   healthcare systems, data privacy is an important issue.  Encryption
   is required, and role-based access control is needed for proper
   authentication.  In home automation scenarios, critical applications
   such as door locks require high security and robustness against
   intrusion.  On the other hand, a remote-controlled light switch has
   no critical security threats.

5.  Acknowledgements

   Special thanks to Nicolas Chevrollier for participating in the
   initial design of the document.  Also, thanks to David Cypher for
   giving more insight on the IEEE 802.15.4 standard, and to Irene
   Fernandez, Shoichi Sakane, and Paul Chilton for their review and
   valuable comments.

6.  References

6.1.  Normative References

   [1]   Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
         "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
         September 2007.

   [2]   Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6 over
         Low-Power Wireless Personal Area Networks (6LoWPANs): Overview,
         Assumptions, Problem Statement, and Goals", RFC 4919,
         August 2007.






RFC 6568             6LoWPAN Design and Applications          April 2012


   [3]   Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
         "Transmission of IPv6 Packets over IEEE 802.15.4 Networks",
         RFC 4944, September 2007.

   [4]   Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen, "Internet Key
         Exchange Protocol Version 2 (IKEv2)", RFC 5996, September 2010.

   [5]   IEEE Computer Society, "IEEE Standard for Local and
         Metropolitan Area Networks -- Part 15.4:  Low-Rate Wireless
         Personal Area Networks (LR-WPANs)", IEEE Std. 802.15.4-2011,
         September 2011.

6.2.  Informative References

   [6]   Shelby, Z., Ed., Chakrabarti, S., and E. Nordmark, "Neighbor
         Discovery Optimization for Low Power and Lossy Networks
         (6LoWPAN)", Work in Progress, October 2011.

   [7]   Hui, J., Ed., and P. Thubert, "Compression Format for IPv6
         Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
         September 2011.

   [8]   Kim, E., Kaspar, D., Gomez, C., and C. Bormann, "Problem
         Statement and Requirements for 6LoWPAN Routing", Work
         in Progress, November 2011.

   [9]   Roemer, K. and F. Mattern, "The Design Space of Wireless Sensor
         Networks", IEEE Wireless Communications, Vol. 11, No. 6,
         pp. 54-61, December 2004.

   [10]  den Hartog, F., Schmidt, J., and A. de Vries, "On the potential
         of personal networks for hospitals", International Journal of
         Medical Informatics, 75, pp. 658-663, May 2006.

   [11]  Dutertre, B., Cheung, S., and J. Levy, "Lightweight Key
         Management in Wireless Sensor Networks by Leveraging Initial
         Trust", SDL Technical Report SRI-SDL-04-02, April 2004.

   [12]  Chen, D. and P.K. Varshney, "QoS Support in Wireless Sensor
         Networks: A Survey", Proc. 2004 Int. Conf. Wireless
         Networks (ICWN 2004), June 2004.

   [13]  Kivinen, T., "Minimal IKEv2", Work in Progress, February 2011.








RFC 6568             6LoWPAN Design and Applications          April 2012


Authors' Addresses

   Eunsook Kim
   ETRI
   161 Gajeong-dong
   Yuseong-gu
   Daejeon  305-700
   Korea

   Phone: +82-42-860-6124
   EMail: eunah.ietf@gmail.com


   Dominik Kaspar
   Simula Research Laboratory
   Martin Linges v 17
   Snaroya  1367
   Norway

   Phone: +47-6782-8200
   EMail: dokaspar.ietf@gmail.com


   JP. Vasseur
   Cisco Systems, Inc.
   1414 Massachusetts Avenue
   Boxborough, MA  01719
   USA

   EMail: jpv@cisco.com