Rfc4192
TitleProcedures for Renumbering an IPv6 Network without a Flag Day
AuthorF. Baker, E. Lear, R. Droms
DateSeptember 2005
Format:TXT, HTML
UpdatesRFC2072
Status:INFORMATIONAL






Network Working Group                                           F. Baker
Request for Comments: 4192                                 Cisco Systems
Updates: 2072                                                    E. Lear
Category: Informational                               Cisco Systems GmbH
                                                                R. Droms
                                                           Cisco Systems
                                                          September 2005


     Procedures for Renumbering an IPv6 Network without a Flag Day

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

   This document describes a procedure that can be used to renumber a
   network from one prefix to another.  It uses IPv6's intrinsic ability
   to assign multiple addresses to a network interface to provide
   continuity of network service through a "make-before-break"
   transition, as well as addresses naming and configuration management
   issues.  It also uses other IPv6 features to minimize the effort and
   time required to complete the transition from the old prefix to the
   new prefix.




















RFC 4192               Renumbering IPv6 Networks          September 2005


Table of Contents

   1. Introduction ....................................................2
      1.1. Summary of the Renumbering Procedure .......................3
      1.2. Terminology ................................................4
      1.3. Summary of What Must Be Changed ............................4
      1.4. Multihoming Issues .........................................5
   2. Detailed Review of Procedure ....................................5
      2.1. Initial Condition: Stable Using the Old Prefix .............6
      2.2. Preparation for the Renumbering Process ....................6
           2.2.1. Domain Name Service .................................7
           2.2.2. Mechanisms for Address Assignment to Interfaces .....7
      2.3. Configuring Network Elements for the New Prefix ............8
      2.4. Adding New Host Addresses ..................................9
      2.5. Stable Use of Either Prefix ...............................10
      2.6. Transition from Use of the Old Prefix to the New Prefix ...10
           2.6.1. Transition of DNS Service to the New Prefix ........10
           2.6.2. Transition to Use of New Addresses .................10
      2.7. Removing the Old Prefix ...................................11
      2.8. Final Condition: Stable Using the New Prefix ..............11
   3. How to Avoid Shooting Yourself in the Foot .....................12
      3.1. Applications Affected by Renumbering ......................12
      3.2. Renumbering Switch and Router Interfaces ..................12
      3.3. Ingress Filtering .........................................13
      3.4. Link Flaps in BGP Routing .................................13
   4. Call to Action for the IETF ....................................14
      4.1. Dynamic Updates to DNS Across Administrative Domains ......14
      4.2. Management of the Reverse Zone ............................14
   5. Security Considerations ........................................14
   6. Acknowledgements ...............................................16
   7. References .....................................................17
      7.1. Normative References ......................................17
      7.2. Informative References ....................................17
   Appendix A.  Managing Latency in the DNS ..........................20

1.  Introduction

   The Prussian military theorist Carl von Clausewitz [Clausewitz]
   wrote, "Everything is very simple in war, but the simplest thing is
   difficult.  These difficulties accumulate and produce a friction,
   which no man can imagine exactly who has not seen war....  So in war,
   through the influence of an 'infinity of petty circumstances' which
   cannot properly be described on paper, things disappoint us and we
   fall short of the mark".  Operating a network is aptly compared to
   conducting a war.  The difference is that the opponent has the futile
   expectation that homo ignoramus will behave intelligently.





RFC 4192               Renumbering IPv6 Networks          September 2005


   A "flag day" is a procedure in which the network, or a part of it, is
   changed during a planned outage, or suddenly, causing an outage while
   the network recovers.  Avoiding outages requires the network to be
   modified using what in mobility might be called a "make before break"
   procedure: the network is enabled to use a new prefix while the old
   one is still operational, operation is switched to that prefix, and
   then the old one is taken down.

   This document addresses the key procedural issues in renumbering an
   IPv6 [RFC2460] network without a "flag day".  The procedure is
   straightforward to describe, but operationally can be difficult to
   automate or execute due to issues of statically configured network
   state, which one might aptly describe as "an infinity of petty
   circumstances".  As a result, in certain areas, this procedure is
   necessarily incomplete, as network environments vary widely and no
   one solution fits all.  It points out a few of many areas where there
   are multiple approaches.  This document updates [RFC2072].  This
   document also contains recommendations for application design and
   network management, which, if taken seriously, may avoid or minimize
   the impact of the issues.

1.1.  Summary of the Renumbering Procedure

   By "renumbering a network", we mean replacing the use of an existing
   (or "old") prefix throughout a network with a new prefix.  Usually,
   both prefixes will be the same length.  The procedures described in
   this document are, for the most part, equally applicable if the two
   prefixes are not the same length.  During renumbering, sub-prefixes
   (or "link prefixes") from the old prefix, which have been assigned to
   links throughout the network, will be replaced by link prefixes from
   the new prefix.  Interfaces on systems throughout the network will be
   configured with IPv6 addresses from the link prefixes of the new
   prefix, and any addresses from the old prefix in services like DNS
   [RFC1034][RFC1035] or configured into switches and routers and
   applications will be replaced by the appropriate addresses from the
   new prefix.

   The renumbering procedure described in this document can be applied
   to part of a network as well as to an organization's entire network.
   In the case of a large organization, it may be advantageous to treat
   the network as a collection of smaller networks.  Renumbering each of
   the smaller networks separately will make the process more
   manageable.  The process described in this document is generally
   applicable to any network, whether it is an entire organization
   network or part of a larger network.






RFC 4192               Renumbering IPv6 Networks          September 2005


1.2.  Terminology

   DDNS:  Dynamic DNS [RFC2136][RFC3007] updates can be secured through
      the use of SIG(0) [RFC4033][RFC4034][RFC4035][RFC2931] and TSIG
      [RFC2845].

   DHCP prefix delegation: An extension to DHCP [RFC3315] to automate
      the assignment of a prefix, for example, from an ISP to a customer
      [RFC3633].

   flag day:  A transition that involves a planned service outage.

   ingress/egress filters: Filters applied to a router interface
      connected to an external organization, such as an ISP, to exclude
      traffic with inappropriate IPv6 addresses.

   link prefix: A prefix, usually a /64 [RFC3177], assigned to a link.

   SLAC:  StateLess Address AutoConfiguration [RFC2462].

1.3.  Summary of What Must Be Changed

   Addresses from the old prefix that are affected by renumbering will
   appear in a wide variety of places in the components in the
   renumbered network.  The following list gives some of the places that
   may include prefixes or addresses that are affected by renumbering,
   and gives some guidance about how the work required during
   renumbering might be minimized:

   o  Link prefixes assigned to links.  Each link in the network must be
      assigned a link prefix from the new prefix.

   o  IPv6 addresses assigned to interfaces on switches and routers.
      These addresses are typically assigned manually, as part of
      configuring switches and routers.

   o  Routing information propagated by switches and routers.

   o  Link prefixes advertised by switches and routers [RFC2461].

   o  Ingress/egress filters.

   o  ACLs and other embedded addresses on switches and routers.

   o  IPv6 addresses assigned to interfaces on hosts.  Use of StateLess
      Address Autoconfiguration (SLAC) [RFC2462] or DHCP [RFC3315] can
      mitigate the impact of renumbering the interfaces on hosts.




RFC 4192               Renumbering IPv6 Networks          September 2005


   o  DNS entries.  New AAAA and PTR records are added and old ones
      removed in several phases to reflect the change of prefix.
      Caching times are adjusted accordingly during these phases.

   o  IPv6 addresses and other configuration information provided by
      DHCP.

   o  IPv6 addresses embedded in configuration files, applications, and
      elsewhere.  Finding everything that must be updated and automating
      the process may require significant effort, which is discussed in
      more detail in Section 3.  This process must be tailored to the
      needs of each network.

1.4.  Multihoming Issues

   In addition to the considerations presented, the operational matters
   of multihoming may need to be addressed.  Networks are generally
   renumbered for one of three reasons: the network itself is changing
   its addressing policy and must renumber to implement the new policy
   (for example, a company has been acquired and is changing addresses
   to those used by its new owner), an upstream provider has changed its
   prefixes and its customers are forced to do so at the same time, or a
   company is changing providers and must perforce use addresses
   assigned by the new provider.  The third case is common.

   When a company changes providers, it is common to institute an
   overlap period, during which it is served by both providers.  By
   definition, the company is multihomed during such a period.  Although
   this document is not about multihoming per se, problems can arise as
   a result of ingress filtering policies applied by the upstream
   provider or one of its upstream providers, so the user of this
   document also needs to be cognizant of these issues.  This is
   discussed in detail, and approaches to dealing with it are described,
   in [RFC2827] and [RFC3704].

2.  Detailed Review of Procedure

   During the renumbering process, the network transitions through eight
   states.  In the initial state, the network uses just the prefix that
   is to be replaced during the renumbering process.  At the end of the
   process, the old prefix has been entirely replaced by the new prefix,
   and the network is using just the new prefix.  To avoid a flag day
   transition, the new prefix is deployed first and the network reaches
   an intermediate state in which either prefix can be used.  In this
   state, individual hosts can make the transition to using the new
   prefix as appropriate to avoid disruption of applications.  Once all





RFC 4192               Renumbering IPv6 Networks          September 2005


   of the hosts have made the transition to the new prefix, the network
   is reconfigured so that the old prefix is no longer used in the
   network.

   In this discussion, we assume that an entire prefix is being replaced
   with another entire prefix.  It may be that only part of a prefix is
   being changed, or that more than one prefix is being changed to a
   single joined prefix.  In such cases, the basic principles apply, but
   will need to be modified to address the exact situation.  This
   procedure should be seen as a skeleton of a more detailed procedure
   that has been tailored to a specific environment.  Put simply, season
   to taste.

2.1.  Initial Condition: Stable Using the Old Prefix

   Initially, the network is using an old prefix in routing, device
   interface addresses, filtering, firewalls, and other systems.  This
   is a stable configuration.

2.2.  Preparation for the Renumbering Process

   The first step is to obtain the new prefix and new reverse zone from
   the delegating authority.  These delegations are performed using
   established procedures, from either an internal or external
   delegating authority.

   Before any devices are reconfigured as a result of the renumbering
   event, each link in the network must be assigned a sub-prefix from
   the new prefix.  While this assigned link prefix does not explicitly
   appear in the configuration of any specific switch, router, or host,
   the network administrator performing the renumbering procedure must
   make these link prefix assignments prior to beginning the procedure
   to guide the configuration of switches and routers, assignment of
   addresses to interfaces, and modifications to network services such
   as DNS and DHCP.

   Prior to renumbering, various processes will need to be reconfigured
   to confirm bindings between names and addresses more frequently.  In
   normal operation, DNS name translations and DHCP bindings are often
   given relatively long lifetimes to limit server load.  In order to
   reduce transition time from old to new prefix, it may be necessary to
   reduce the time to live (TTL) associated with DNS records and
   increase the frequency with which DHCP clients contact the DHCP
   server.  At the same time, a procedure must be developed through
   which other configuration parameters will be updated during the
   transition period when both prefixes are available.





RFC 4192               Renumbering IPv6 Networks          September 2005


2.2.1.  Domain Name Service

   During the renumbering process, the DNS database must be updated to
   add information about addresses assigned to interfaces from the new
   prefix and to remove addresses assigned to interfaces from the old
   prefix.  The changes to the DNS must be coordinated with the changes
   to the addresses assigned to interfaces.

   Changes to the information in the DNS have to propagate from the
   server at which the change was made to the resolvers where the
   information is used.  The speed of this propagation is controlled by
   the TTL for DNS records and the frequency of updates from primary to
   secondary servers.

   The latency in propagating changes in the DNS can be managed through
   the TTL assigned to individual DNS records and through the timing of
   updates from primary to secondary servers.  Appendix A gives an
   analysis of the factors controlling the propagation delays in the
   DNS.

   The suggestions for reducing the delay in the transition to new IPv6
   addresses applies when the DNS service can be given prior notice
   about a renumbering event.  However, the DNS service for a host may
   be in a different administrative domain than the network to which the
   host is attached.  For example, a device from organization A that
   roams to a network belonging to organization B, but the device's DNS
   A record is still managed by organization A, where the DNS service
   won't be given advance notice of a renumbering event in organization
   B.

   One strategy for updating the DNS is to allow each system to manage
   its own DNS information through Dynamic DNS (DDNS)
   [RFC2136][RFC3007].  Authentication of these DDNS updates is strongly
   recommended and can be accomplished through TSIG and SIG(0).  Both
   TSIG and SIG(0) require configuration and distribution of keys to
   hosts and name servers in advance of the renumbering event.

2.2.2.  Mechanisms for Address Assignment to Interfaces

   IPv6 addresses may be assigned through SLAC, DHCP, and manual
   processes.  If DHCP is used for IPv6 address assignment, there may be
   some delay in the assignment of IPv6 addresses from the new prefix
   because hosts using DHCP only contact the server periodically to
   extend the lifetimes on assigned addresses.  This delay can be
   reduced in two ways:






RFC 4192               Renumbering IPv6 Networks          September 2005


   o  Prior to the renumbering event, the T1 parameter (which controls
      the time at which a host using DHCP contacts the server) may be
      reduced.

   o  The DHCP Reconfigure message may also be sent from the server to
      the hosts to trigger the hosts to contact the server immediately.

2.3.  Configuring Network Elements for the New Prefix

   In this step, switches and routers and services are prepared for the
   new prefix but the new prefix is not used for any datagram
   forwarding.  Throughout this step, the new prefix is added to the
   network infrastructure in parallel with (and without interfering
   with) the old prefix.  For example, addresses assigned from the new
   prefix are configured in addition to any addresses from the old
   prefix assigned to interfaces on the switches and routers.  Changes
   to the routing infrastructure for the new prefix are added in
   parallel with the old prefix so that forwarding for both prefixes
   operates in parallel.  At the end of this step, the network is still
   running on the old prefix but is ready to begin using the new prefix.

   The new prefix is added to the routing infrastructure, firewall
   filters, ingress/egress filters, and other forwarding and filtering
   functions.  Routes for the new link prefixes may be injected by
   routing protocols into the routing subsystem, but the router
   advertisements should not cause hosts to perform SLAC on the new link
   prefixes; in particular the "autonomous address-configuration" flag
   [RFC2461] should not be set in the advertisements for the new link
   prefixes.  The reason hosts should not be forming addresses at this
   point is that routing to the new addresses may not yet be stable.

   The details of this step will depend on the specific architecture of
   the network being renumbered and the capabilities of the components
   that make up the network infrastructure.  The effort required to
   complete this step may be mitigated by the use of DNS, DHCP prefix
   delegation [RFC3633], and other automated configuration tools.

   While the new prefix is being added, it will of necessity not be
   working everywhere in the network, and unless properly protected by
   some means such as ingress and egress access lists, the network may
   be attacked through the new prefix in those places where it is
   operational.

   Once the new prefix has been added to the network infrastructure,
   access-lists, route-maps, and other network configuration options
   that use IP addresses should be checked to ensure that hosts and
   services that use the new prefix will behave as they did with the old
   one.  Name services other than DNS and other services that provide



RFC 4192               Renumbering IPv6 Networks          September 2005


   information that will be affected by renumbering must be updated in
   such a way as to avoid responding with stale information.  There are
   several useful approaches to identify and augment configurations:

   o  Develop a mapping from each network and address derived from the
      old prefix to each network and address derived from the new
      prefix.  Tools such as the UNIX "sed" or "perl" utilities are
      useful to then find and augment access-lists, route-maps, and the
      like.

   o  A similar approach involves the use of such mechanisms as DHCP
      prefix delegation to abstract networks and addresses.

   Switches and routers or manually configured hosts that have IPv6
   addresses assigned from the new prefix may be used at this point to
   test the network infrastructure.

   Advertisement of the prefix outside its network is the last thing to
   be configured during this phase.  One wants to have all of one's
   defenses in place before advertising the prefix, if only because the
   prefix may come under immediate attack.

   At the end of this phase, routing, access control, and other network
   services should work interchangeably for both old and new prefixes.

2.4.  Adding New Host Addresses

   Once the network infrastructure for the new prefix is in place and
   tested, IPv6 addresses from the new prefix may be assigned to host
   interfaces while the addresses from the old prefix are retained on
   those interfaces.  The new IPv6 addresses may be assigned through
   SLAC, DHCP, and manual processes.  If SLAC is used in the network,
   the switches and routers are configured to indicate that hosts should
   use SLAC to assign IPv6 addresses from the new prefix.  If DHCP is
   used for IPv6 address assignment, the DHCP service is configured to
   assign addresses from both prefixes to hosts.  The addresses from the
   new prefixes will not be used until they are inserted into the DNS.

   Once the new IPv6 addresses have been assigned to the host
   interfaces, both the forward and reverse maps within DNS should be
   updated for the new addresses, either through automated or manual
   means.  In particular, some clients may be able to update their
   forward maps through DDNS, but automating the update of the reverse
   zone may be more difficult as discussed in Section 4.2.







RFC 4192               Renumbering IPv6 Networks          September 2005


2.5.  Stable Use of Either Prefix

   Once the network has been configured with the new prefix and has had
   sufficient time to stabilize, it becomes a stable platform with two
   addresses configured on each and every infrastructure component
   interface (apart from interfaces that use only the link-local
   address), and two non-link-local addresses are available for the use
   of any host, one in the old prefix and one in the new.  This is a
   stable configuration.

2.6.  Transition from Use of the Old Prefix to the New Prefix

   When the new prefix has been fully integrated into the network
   infrastructure and has been tested for stable operation, hosts,
   switches, and routers can begin using the new prefix.  Once the
   transition has completed, the old prefix will not be in use in the
   network.

2.6.1.  Transition of DNS Service to the New Prefix

   The DNS service is configured to use the new prefix by removing any
   IPv6 addresses from the old prefix from the DNS server configuration.
   External references to the DNS servers, such as in the DNS service
   from which this DNS domain was delegated, are updated to use the IPv6
   addresses from the new prefix.

2.6.2.  Transition to Use of New Addresses

   When both prefixes are usable in the network, each host can make the
   transition from using the old prefix to the new prefix at a time that
   is appropriate for the applications on the host.  If the host
   transitions are randomized, DNS dynamic update mechanisms can better
   scale to accommodate the changes to the DNS.

   As services become available through addresses from the new prefix,
   references to the hosts providing those services are updated to use
   the new prefix.  Addresses obtained through DNS will be automatically
   updated when the DNS names are resolved.  Addresses may also be
   obtained through DHCP and will be updated as hosts contact DHCP
   servers.  Addresses that are otherwise configured must be updated
   appropriately.

   It may be necessary to provide users with tools or other explicit
   procedures to complete the transition from the use of the old prefix
   to the new prefix, because some applications and operating system
   functions may be configured in ways that do not use DNS at all or
   will not use DNS to resolve a domain name to a new address once the
   new prefix is available.  For example, a device that only uses DNS to



RFC 4192               Renumbering IPv6 Networks          September 2005


   resolve the name of an NTP server when the device is initialized will
   not obtain the address from the new prefix for that server at this
   point in the renumbering process.

   This last point warrants repeating (in a slightly different form).
   Applications may cache addressing information in different ways, for
   varying lengths of time.  They may cache this information in memory,
   on a file system, or in a database.  Only after careful observation
   and consideration of one's environment should one conclude that a
   prefix is no longer in use.  For more information on this issue, see
   [DNSOP].

   The transition of critical services such as DNS, DHCP, NTP [RFC1305],
   and important business services should be managed and tested
   carefully to avoid service outages.  Each host should take reasonable
   precautions prior to changing to the use of the new prefix to
   minimize the chance of broken connections.  For example, utilities
   such as netstat and network analyzers can be used to determine if any
   existing connections to the host are still using the address from the
   old prefix for that host.

   Link prefixes from the old prefix in router advertisements and
   addresses from the old prefix provided through DHCP should have their
   preferred lifetimes set to zero at this point, so that hosts will not
   use the old prefixes for new communications.

2.7.  Removing the Old Prefix

   Once all sessions are deemed to have completed, there will be no
   dependence on the old prefix.  It may be removed from the
   configuration of the routing system and from any static
   configurations that depend on it.  If any configuration has been
   created based on DNS information, the configuration should be
   refreshed after the old prefixes have been removed from the DNS.

   During this phase, the old prefix may be reclaimed by the provider or
   Regional Internet Registry that granted it, and addresses within that
   prefix are removed from the DNS.

   In addition, DNS reverse maps for the old prefix may be removed from
   the primary name server and the zone delegation may be removed from
   the parent zone.  Any DNS, DHCP, or SLAC timers that were changed
   should be reset to their original values (most notably the DNS
   forward map TTL).

2.8.  Final Condition: Stable Using the New Prefix

   This is equivalent to the first state, but using the new prefix.



RFC 4192               Renumbering IPv6 Networks          September 2005


3.  How to Avoid Shooting Yourself in the Foot

   The difficult operational issues in Section 2.3, Section 2.6, and
   Section 2.7 are in dealing with the configurations of routers and
   hosts that are not under the control of the network administrator or
   are manually configured.  Examples of such devices include Voice over
   IP (VoIP) telephones with static configuration of boot or name
   servers, dedicated devices used in manufacturing that are configured
   with the IP addresses for specific services, the boot servers of
   routers and switches, etc.

3.1.  Applications Affected by Renumbering

   Applications may inadvertently ignore DNS caching semantics
   associated with IP addresses obtained through DNS resolution.  The
   result is that a long-lived application may continue to use a stale
   IP address beyond the time at which the TTL for that address has
   expired, even if the DNS is updated with new addresses during a
   renumbering event.

   For example, many existing applications make use of standard POSIX
   functions such as getaddrinfo(), which do not preserve DNS caching
   semantics.  If the application caches the response or for whatever
   reason actually records the response on disk, the application will
   have no way to know when the TTL for the response has expired.  Any
   application that requires repeated use of an IP address should either
   not cache the result or make use of an appropriate function that also
   conveys the TTL of the record (e.g., getrrsetbyname()).

   Application designers, equipment vendors, and the Open Source
   community should take note.  There is an opportunity to serve their
   customers well in this area, and network operators should either
   develop or purchase appropriate tools.

3.2.  Renumbering Switch and Router Interfaces

   The configuration and operation of switches and routers are often
   designed to use static configuration with IP addresses or to resolve
   domain names only once and use the resulting IP addresses until the
   element is restarted.  These static configurations complicate the
   process of renumbering, requiring administration of all of the static
   information and manual configuration during a renumbering event.

   Because switches and routers are usually single-purpose devices, the
   user interface and operating functions (software and hardware) are
   often better integrated than independent services running on a server
   platform.  Thus, it is likely that switch vendors and router vendors




RFC 4192               Renumbering IPv6 Networks          September 2005


   can design and implement consistent support for renumbering across
   all of the functions of switches and routers.

   To better support renumbering, switches and routers should use domain
   names for configuration wherever appropriate, and they should resolve
   those names using the DNS when the lifetime on the name expires.

3.3.  Ingress Filtering

   An important consideration in Section 2.3, in the case where the
   network being renumbered is connected to an external provider, is the
   network's ingress filtering policy and its provider's ingress
   filtering policy.  Both the network firewall's ingress filter and the
   provider's ingress filter on the access link to the network should be
   configured to prevent attacks that use source address spoofing.
   Ingress filtering is considered in detail in "Ingress Filtering for
   Multihomed Networks" [RFC3704].

3.4.  Link Flaps in BGP Routing

   A subtle case arises during step 2 in BGP routing when renumbering
   the address(es) used to name the BGP routers.  Two practices are
   common: one is to identify a BGP router by a stable address such as a
   loopback address; another is to use the interface address facing the
   BGP peer.  In each case, when adding a new prefix, a certain
   ambiguity is added: the systems must choose between the addresses,
   and depending on how they choose, different events can happen.

   o  If the existing address remains in use until removed, then this is
      minimized to a routing flap on that event.

   o  If both systems decide to use the address in the new prefix
      simultaneously, the link flap may occur earlier in the process,
      and if this is being done automatically (such as via the router
      renumbering protocol), it may result in route flaps throughout the
      network.

   o  If the two systems choose differently (one uses the old address
      and one uses the new address), a stable routing outage occurs.

   This is not addressed by proposals such as [IDR-RESTART], as it
   changes the "name" of the system, making the matter not one of a flap
   in an existing relationship but (from BGP's perspective) the
   replacement of one routing neighbor with another.  Ideally, one
   should bring up the new BGP connection for the new address while the
   old remains stable and in use, and only then take down the old.  In
   this manner, while there is a TCP connection flap, routing remains
   stable.



RFC 4192               Renumbering IPv6 Networks          September 2005


4.  Call to Action for the IETF

   The more automated one can make the renumbering process, the better
   for everyone.  Sadly, there are several mechanisms that either have
   not been automated or have not been automated consistently across
   platforms.

4.1.  Dynamic Updates to DNS Across Administrative Domains

   The configuration files for a DNS server (such as named.conf) will
   contain addresses that must be reconfigured manually during a
   renumbering event.  There is currently no easy way to automate the
   update of these addresses, as the updates require both complex trust
   relationships and automation to verify them.  For instance, a reverse
   zone is delegated by an upstream ISP, but there is currently no
   mechanism to note additional delegations.

4.2.  Management of the Reverse Zone

   In networks where hosts obtain IPv6 addresses through SLAC, updates
   of reverse zone are problematic because of lack of trust relationship
   between administrative domain owning the prefix and the host
   assigning the low 64 bits using SLAC.  For example, suppose a host,
   H, from organization A is connected to a network owned by
   organization B.  When H obtains a new address during a renumbering
   event through SLAC, H will need to update its reverse entry in the
   DNS through a DNS server from B that owns the reverse zone for the
   new address.  For H to update its reverse entry, the DNS server from
   B must accept a DDNS request from H, requiring that an inter-
   administrative domain trust relationship exist between H and B.  The
   IETF should develop a BCP recommendation for addressing this problem.

5.  Security Considerations

   The process of renumbering is straightforward in theory but can be
   difficult and dangerous in practice.  The threats fall into two broad
   categories: those arising from misconfiguration and those that are
   actual attacks.

   Misconfigurations can easily arise if any system in the network
   "knows" the old prefix, or an address in it, a priori and is not
   configured with the new prefix, or if the new prefix is configured in
   a manner that replaces the old instead of being co-equal to it for a
   period of time.  Simplistic examples include the following:







RFC 4192               Renumbering IPv6 Networks          September 2005


   Neglecting to reconfigure a system that is using the old prefix in
      some static configuration: in this case, when the old prefix is
      removed from the network, whatever feature was so configured
      becomes inoperative - it is not configured for the new prefix, and
      the old prefix is irrelevant.

   Configuring a system via an IPv6 address, and replacing that old
      address with a new address: because the TCP connection is using
      the old and now invalid IPv6 address, the SSH session will be
      terminated and you will have to use SSH through the new address
      for additional configuration changes.

   Removing the old configuration before supplying the new: in this
      case, it may be necessary to obtain on-site support or travel to
      the system and access it via its console.

   Clearly, taking the extra time to add the new prefix to the
   configuration, allowing the network to settle, and then removing the
   old obviates this class of issue.  A special consideration applies
   when some devices are only occasionally used; the administration must
   allow a sufficient length of time in Section 2.6 or apply other
   verification procedures to ensure that their likelihood of detection
   is sufficiently high.

   A subtle case of this type can result when the DNS is used to
   populate access control lists and similar security or QoS
   configurations.  DNS names used to translate between system or
   service names and corresponding addresses are treated in this
   procedure as providing the address in the preferred prefix, which is
   either the old or new prefix but not both.  Such DNS names provide a
   means, as described in Section 2.6, to cause systems in the network
   to stop using the old prefix to access servers or peers and cause
   them to start using the new prefix.  DNS names used for access
   control lists, however, need to go through the same three-step
   procedure used for other access control lists, having the new prefix
   added to them as discussed in Section 2.3 and the old prefix removed
   as discussed in Section 2.7.

   It should be noted that the use of DNS names in this way is not
   universally accepted as a solution to this problem; [RFC3871]
   especially notes cases where static IP addresses are preferred over
   DNS names, in order to avoid a name lookup when the naming system is
   inaccessible or when the result of the lookup may be one of several
   interfaces or systems.  In such cases, extra care must be taken to
   manage renumbering properly.

   Attacks are also possible.  Suppose, for example, that the new prefix
   has been presented by a service provider, and the service provider



RFC 4192               Renumbering IPv6 Networks          September 2005


   starts advertising the prefix before the customer network is ready.
   The new prefix might be targeted in a distributed denial of service
   attack, or a system might be broken into using an application that
   would not cross the firewall using the old prefix, before the
   network's defenses have been configured.  Clearly, one wants to
   configure the defenses first and only then accessibility and routing,
   as described in Section 2.3 and Section 3.3.

   The SLAC procedure described in [RFC2462] renumbers hosts.  Dynamic
   DNS provides a capability for updating DNS accordingly.  Managing
   configuration items apart from those procedures is most obviously
   straightforward if all such configurations are generated from a
   central configuration repository or database, or if they can all be
   read into a temporary database, changed using appropriate scripts,
   and applied to the appropriate systems.  Any place where scripted
   configuration management is not possible or is not used must be
   tracked and managed manually.  Here, there be dragons.

   In ingress filtering of a multihomed network, an easy solution to the
   issues raised in Section 3.3 might recommend that ingress filtering
   should not be done for multihomed customers or that ingress filtering
   should be special-cased.  However, this has an impact on Internet
   security.  A sufficient level of ingress filtering is needed to
   prevent attacks using spoofed source addresses.  Another problem
   comes from the fact that if ingress filtering is made too difficult
   (e.g., by requiring special-casing in every ISP doing it), it might
   not be done at an ISP at all.  Therefore, any mechanism depending on
   relaxing ingress filtering checks should be dealt with with extreme
   care.

6.  Acknowledgements

   This document grew out of a discussion on the IETF list.  Commentary
   on the document came from Bill Fenner, Christian Huitema, Craig
   Huegen, Dan Wing, Fred Templin, Hans Kruse, Harald Tveit Alvestrand,
   Iljitsch van Beijnum, Jeff Wells, John Schnizlein, Laurent Nicolas,
   Michael Thomas, Michel Py, Ole Troan, Pekka Savola, Peter Elford,
   Roland Dobbins, Scott Bradner, Sean Convery, and Tony Hain.

   Some took it on themselves to convince the authors that the concept
   of network renumbering as a normal or frequent procedure is daft.
   Their comments, if they result in improved address management
   practices in networks, may be the best contribution this note has to
   offer.

   Christian Huitema, Pekka Savola, and Iljitsch van Beijnum described
   the ingress filtering issues.  These made their way separately into
   [RFC3704], which should be read and understood by anyone who will



RFC 4192               Renumbering IPv6 Networks          September 2005


   temporarily or permanently create a multihomed network by renumbering
   from one provider to another.

   In addition, the 6NET consortium, notably Alan Ford, Bernard Tuy,
   Christian Schild, Graham Holmes, Gunter Van de Velde, Mark Thompson,
   Nick Lamb, Stig Venaas, Tim Chown, and Tina Strauf, took it upon
   themselves to test the procedure.  Some outcomes of that testing have
   been documented here, as they seemed of immediate significance to the
   procedure; 6NET will also be documenting its own "lessons learned".

7.  References

7.1.  Normative References

   [RFC1034]     Mockapetris, P., "Domain names - concepts and
                 facilities", STD 13, RFC 1034, November 1987.

   [RFC1035]     Mockapetris, P., "Domain names - implementation and
                 specification", STD 13, RFC 1035, November 1987.

   [RFC2072]     Berkowitz, H., "Router Renumbering Guide", RFC 2072,
                 January 1997.

   [RFC2460]     Deering, S. and R. Hinden, "Internet Protocol, Version
                 6 (IPv6) Specification", RFC 2460, December 1998.

   [RFC2461]     Narten, T., Nordmark, E., and W. Simpson, "Neighbor
                 Discovery for IP Version 6 (IPv6)", RFC 2461, December
                 1998.

   [RFC2462]     Thomson, S. and T. Narten, "IPv6 Stateless Address
                 Autoconfiguration", RFC 2462, December 1998.

   [RFC3315]     Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
                 and M. Carney, "Dynamic Host Configuration Protocol for
                 IPv6 (DHCPv6)", RFC 3315, July 2003.

   [RFC3704]     Baker, F. and P. Savola, "Ingress Filtering for
                 Multihomed Networks", BCP 84, RFC 3704, March 2004.

7.2.  Informative References

   [Clausewitz]  von Clausewitz, C., Howard, M., Paret, P. and D.
                 Brodie, "On War, Chapter VII, 'Friction in War'", June
                 1989.






RFC 4192               Renumbering IPv6 Networks          September 2005


   [DNSOP]       Durand, A., Ihren, J. and P. Savola, "Operational
                 Considerations and Issues with IPv6 DNS", Work in
                 Progress, October 2004.

   [IDR-RESTART] Sangli, S., Rekhter, Y., Fernando, R., Scudder, J. and
                 E.  Chen, "Graceful Restart Mechanism for BGP", Work in
                 Progress, June 2004.

   [RFC1305]     Mills, D., "Network Time Protocol (Version 3)
                 Specification, Implementation and Analysis", RFC 1305,
                 March 1992.

   [RFC1995]     Ohta, M., "Incremental Zone Transfer in DNS", RFC 1995,
                 August 1996.

   [RFC1996]     Vixie, P., "A Mechanism for Prompt Notification of Zone
                 Changes (DNS NOTIFY)", RFC 1996, August 1996.

   [RFC2136]     Vixie, P., Thomson,  S., Rekhter, Y., and J. Bound,
                 "Dynamic Updates in the Domain Name System (DNS
                 UPDATE)", RFC 2136, April 1997.

   [RFC2827]     Ferguson, P. and D. Senie, "Network Ingress Filtering:
                 Defeating Denial of Service Attacks which employ IP
                 Source Address Spoofing", BCP 38, RFC 2827, May 2000.

   [RFC2845]     Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B.
                 Wellington, "Secret Key Transaction Authentication for
                 DNS (TSIG)", RFC 2845, May 2000.

   [RFC2931]     Eastlake 3rd, D., "DNS Request and Transaction
                 Signatures ( SIG(0)s )", RFC 2931, September 2000.

   [RFC3007]     Wellington, B., "Secure Domain Name System (DNS)
                 Dynamic Update", RFC 3007, November 2000.

   [RFC3177]     IAB and IESG, "IAB/IESG Recommendations on IPv6 Address
                 Allocations to Sites", RFC 3177, September 2001.

   [RFC3633]     Troan, O. and R. Droms, "IPv6 Prefix Options for
                 Dynamic Host Configuration Protocol (DHCP) version 6",
                 RFC 3633, December 2003.

   [RFC3871]     Jones, G., "Operational Security Requirements for Large
                 Internet Service Provider (ISP) IP Network
                 Infrastructure", RFC 3871, September 2004.





RFC 4192               Renumbering IPv6 Networks          September 2005


   [RFC4033]     Arends, R., Austein, R., Larson, M., Massey, D., and S.
                 Rose, "DNS Security Introduction and Requirements", RFC
                 4033, March 2005.

   [RFC4034]     Arends, R., Austein, R., Larson, M., Massey, D., and S.
                 Rose, "Resource Records for the DNS Security
                 Extensions", RFC 4034, March 2005.

   [RFC4035]     Arends, R., Austein, R., Larson, M., Massey, D., and S.
                 Rose, "Protocol Modifications for the DNS Security
                 Extensions", RFC 4035, March 2005.








































RFC 4192               Renumbering IPv6 Networks          September 2005


Appendix A.  Managing Latency in the DNS

   The procedure in this section can be used to determine and manage the
   latency in updates to information a DNS resource record (RR).

   There are several kinds of possible delays that are ignored in these
   calculations:

   o  the time it takes for the administrators to make the changes;

   o  the time it may take to wait for the DNS update, if the
      secondaries are only updated at regular intervals, and not
      immediately; and

   o  the time the updating to all the secondaries takes.

   Assume the use of NOTIFY [RFC1996] and IXFR [RFC1995] to transfer
   updated information from the primary DNS server to any secondary
   servers; this is a very quick update process, and the actual time to
   update of information is not considered significant.

   There is a target time, TC, at which we want to change the contents
   of a DNS RR.  The RR is currently configured with TTL == TTLOLD.  Any
   cached references to the RR will expire no more than TTLOLD in the
   future.

   At time TC - (TTLOLD + TTLNEW), the RR in the primary is configured
   with TTLNEW (TTLNEW < TTLOLD).  The update process is initiated to
   push the RR to the secondaries.  After the update, responses to
   queries for the RR are returned with TTLNEW.  There are still some
   cached references with TTLOLD.

   At time TC - TTLNEW, the RR in the primary is configured with the new
   address.  The update process is initiated to push the RR to the
   secondaries.  After the update, responses to queries for the RR
   return the new address.  All the cached references have TTLNEW.
   Between this time and TC, responses to queries for the RR may be
   returned with either the old address or the new address.  This
   ambiguity is acceptable, assuming the host is configured to respond
   to both addresses.

   At time TC, all the cached references with the old address have
   expired, and all subsequent queries will return the new address.
   After TC (corresponding to the final state described in Section 2.8),
   the TTL on the RR can be set to the initial value TTLOLD.

   The network administrator can choose TTLOLD and TTLNEW to meet local
   requirements.



RFC 4192               Renumbering IPv6 Networks          September 2005


   As a concrete example, consider a case where TTLOLD is a week (168
   hours) and TTLNEW is an hour.  The preparation for the change of
   addresses begins 169 hours before the address change.  After 168
   hours have passed and only one hour is left, the TTLNEW has
   propagated everywhere, and one can change the address record(s).
   These are propagated within the hour, after which one can restore TTL
   value to a larger value.  This approach minimizes time where it is
   uncertain what kind of (address) information is returned from the
   DNS.

Authors' Addresses

   Fred Baker
   Cisco Systems
   1121 Via Del Rey
   Santa Barbara, CA  93117
   US

   Phone: 408-526-4257
   Fax:   413-473-2403
   EMail: fred@cisco.com


   Eliot Lear
   Cisco Systems GmbH
   Glatt-com 2nd Floor
   CH-8301 Glattzentrum
   Switzerland

   Phone: +41 1 878 9200
   EMail: lear@cisco.com


   Ralph Droms
   Cisco Systems
   200 Beaver Brook Road
   Boxborough, MA  01719
   US

   Phone: +1 978 936-1674
   EMail: rdroms@cisco.com










RFC 4192               Renumbering IPv6 Networks          September 2005


Full Copyright Statement

   Copyright (C) The Internet Society (2005).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.