Rfc3767
TitleSecurely Available Credentials Protocol
AuthorS. Farrell, Ed.
DateJune 2004
Format:TXT, HTML
Updated byRFC8996
Status:PROPOSED STANDARD






Network Working Group                                    S. Farrell, Ed.
Request for Comments: 3767                        Trinity College Dublin
Category: Standards Track                                      June 2004


                Securely Available Credentials Protocol

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2004).

Abstract

   This document describes a protocol whereby a user can acquire
   cryptographic credentials (e.g., private keys, PKCS #15 structures)
   from a credential server, using a workstation that has locally
   trusted software installed, but with no user-specific configuration.
   The protocol's payloads are described in XML.  This memo also
   specifies a Blocks Extensible Exchange Protocol (BEEP) profile of the
   protocol.  Security requirements are  met by mandating support for
   TLS and/or DIGEST-MD5 (through BEEP).

Table Of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
   2.  The Protocol. . . . . .  . . . . . . . . . . . . . . . . . . .  3
   3.  BEEP Profile for SACRED. . . . . . . . . . . . . . . . . . . .  9
   4.  IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 12
   5.  Security Considerations. . . . . . . . . . . . . . . . . . . . 13
   6.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 15
   Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 16
   Appendix A: XML Schema . . . . . . . . . . . . . . . . . . . . . . 17
   Appendix B: An Example of Tuning with BEEP . . . . . . . . . . . . 20
   Appendix C: Provision SACRED using other Protocols . . . . . . . . 23
   Editor's Address . . . . . . . . . . . . . . . . . . . . . . . . . 24
   Full Copyright Statement. . . . . . . . . . . .  . . . . . . . . . 25







RFC 3767              Secure Credentials Protocol              June 2004


1.  Introduction

   Digital credentials, such as private keys and corresponding
   certificates, are used to support various Internet protocols, e.g.
   S/MIME, IPSec, and TLS.  In a number of environments, end users wish
   to use the same credentials on different end-user devices.  In a
   "typical" desktop environment, the user already has many tools
   available to allow import/export of these credentials.  However, this
   is not very practical.  In addition, with some devices, especially
   wireless and other more constrained devices, the tools required
   simply do not exist.

   This document describes a protocol for the secure exchange of such
   credentials and is a realization of the abstract protocol framework
   described in [RFC3760].

   Many user-chosen passwords are vulnerable to dictionary attacks.  So
   the SACRED protocol is designed to give no information with which an
   attacker can acquire information for launching a dictionary attack,
   whether by eavesdropping or by impersonating either the client or
   server.

   The protocol also allows a user to create or delete an account,
   change her account password and/or credentials, and upload the new
   values to the server.  The protocol ensures that only someone that
   knew the old account password is able to modify the credentials as
   stored on the credential server.  The protocol does not preclude
   configuring a server to disallow some operations (e.g. credential
   upload) for some users.  The account management operations as a whole
   are optional implementations for both credential servers and clients.

   Note that there are potentially two "passwords" involved when using
   this protocol - the first used to authenticate the user to the
   credential server, and the second to decrypt (parts of) the
   credential following a download operation.  Where the context
   requires it, we refer to the former as the account password and the
   latter as the credential password.

   Using a protocol such as this is somewhat less secure than using a
   smart card, but can be used until smart cards and smart card readers
   on workstations become ubiquitous, and can be useful even after smart
   cards are ubiquitous, as a backup strategy when a user's smart card
   is lost or malfunctioning.

   The protocol sets out to meet the requirements in [REQS].
   Cryptographic credentials may take the form of private keys, PKCS #15
   [PKCS15], or structures.  As stated, a profile based on BEEP [BEEP]
   is specified for message transport and security (integrity,



RFC 3767              Secure Credentials Protocol              June 2004


   authentication, and confidentiality).  In that case, the security
   requirements are met by mandating support (via BEEP) for TLS [TLS]
   and/or DIGEST-MD5 [DIGEST-MD5].

   We assume the only authentication information available to the user
   is a username and password.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  The Protocol

   This section defines the account management and "run-time" operations
   for the SACRED protocol.

   It also describes the message formats used, which are described in
   XML [XMLSCHEMA].  Appendix A provides an XML schema for these
   elements.

   The approach taken here is to define SACRED elements that are
   compatible with the elements used in [XKMS] and [XMLDSIG], so that an
   implementation of this protocol can easily also support XKMS, and
   vice versa.

   It is also intended that other SACRED protocol instances (e.g. using
   a different authentication scheme, credential format, or transport
   protocol) could re-use many of the definitions here.

2.1.  Account Management Operations

   These operations MAY be implemented, that is, they are OPTIONAL.

2.1.1.  Information Request

   This operation does NOT REQUIRE authentication.

   The purpose of this operation is to provide the client with the
   values required for account creation.

   The client sends an InfoRequest message (which has no content).

   The server responds with an InfoResponse message which contains the
   authentication mechanism parameters for the server and the list of
   supported ProcessInfo types.  For DIGEST-MD5, this consists of the
   list of realms (each as an XML element named "Realm") which the
   server supports.  There MUST be at least one realm specified.




RFC 3767              Secure Credentials Protocol              June 2004


   Clients MUST be able to select one from a list of Realms and MUST be
   able to disregard any other information present (allowed for
   extensibility).

2.1.2.  Create Account

   This operation REQUIRES server authentication.

   The purpose of this operation is to setup a new account on the
   server.  The information required for a "new" account will depend on
   the SASL [SASL] mechanism used.

   The client sends a CreateAccountRequest, which contains the account
   name (e.g. username).  It also contains the elements required to
   create an account for a particular authentication mechanism.  The
   actual information is defined according to the authentication
   mechanism.  For DIGEST-MD5, this consists of the password verifier
   (the hashed username, password and realm) and the chosen realm.
   Although more than one set of such data is allowed by the data
   structures defined in the appendix, clients SHOULD only include one
   here.

   The server responds with an error or acknowledgement message.

2.1.3.  Remove Account

   This operation REQUIRES mutual authentication.

   The purpose of this operation is to delete the entire account.

   The client sends a RemoveAccountRequest message (which has no
   content) to the server.

   The server MUST delete all information relating to the account and
   respond with an error or acknowledgement message.

2.1.4.  Modify Account

   This operation REQUIRES mutual authentication.

   The purpose of this operation is to allow the client to change the
   information required for authentication.  The information required
   will depend on the authentication method used.








RFC 3767              Secure Credentials Protocol              June 2004


   The client sends a ModifyAccountRequest message, which contains the
   elements required to change the authentication information for the
   account, for a particular authentication mechanism.  The actual
   information is defined according to the authentication mechanism. For
   [DIGEST-MD5], it will consist of a realm and password verifier value.

   Once the account information has been changed, the server will
   respond with an error or acknowledgement message.

2.2.  "Run-time" Operations

   These operations MUST be supported by all conformant implementations.

2.2.1.  Credential Upload

   This operation REQUIRES mutual authentication.

   The purpose of this operation is to allow the client to deposit a
   credential with the server.

   The client sends an UploadRequest message to the server which MUST
   contain one Credential.

   If a credential with the same credential selector field as in the
   UploadRequest (a "matching" credential) already exists for the
   account, then that credential is replaced with the new credential
   from the UploadRequest.  Otherwise a "new" credential is associated
   with that account.  If a new credential is being uploaded, then the
   client SHOULD include (in LastModified) its local concept of the time
   (if it has one), or an indicator that it has no clock.  The actual
   value of LastModified can be anything, (but the element has to be
   present) since this will be overwritten by the server in any case.

   If any change is made to the stored credentials associated with the
   account, then the server MUST update the corresponding LastModified
   value (returned in DownloadResponse messages) to the current time (at
   the server).














RFC 3767              Secure Credentials Protocol              June 2004


   The LastModified value in the UploadRequest MUST be the value which
   was most recently received in a corresponding DownloadResponse for
   that credential.  This means the clients are strongly RECOMMENDED to
   only produce an UploadRequest based on recently downloaded
   credentials, since otherwise the LastModified value may be out of
   date.

   The LastModified value can also be of use in detecting conflicts.
   For example, download to platform A, download to platform B, update
   from B, update from A.  The server could detect a conflict on the
   second upload.  In this case the server MUST respond with a BEEP
   error (which SHOULD be StaleCredential).

   The server replaces the provided LastModified value with the current
   time at the server before storing the credential.  (Note that this
   means that it would be unwise for a client to include the
   LastModified field in a ClientInfo digital signature which is
   calculated over the CredentialType.)

   The server responds with an error or acknowledgement message.

2.2.2.  Credential Download

   This operation REQUIRES mutual authentication.

   The purpose of this operation is to allow a client to get one or more
   credentials from a server (the purpose of the entire protocol
   really!).

   The client sends a DownloadRequest message to the server which MAY
   contain a credential selector string for the credential.  No, or an
   empty credential selector means the request is for all credentials
   associated with the account.

   The server responds with a DownloadResponse or an error message.  A
   DownloadResponse contains one or more credential payloads, including
   the LastModified time which represents the time (at the server) when
   the last change was made to each credential associated with the
   account (e.g. subsequent to an UploadRequest).

2.2.3.  Credential Delete

   This operation REQUIRES mutual authentication.

   The purpose of this operation is to allow the client to delete one or
   all credentials associated with the account.





RFC 3767              Secure Credentials Protocol              June 2004


   The client sends a DeleteRequest message to the server which can
   contain either a CredentialSelector or an All element.

   If the DeleteRequest contains an All element, then all of the
   credentials associated with that account are deleted.

   If the DeleteRequest contains a CredentialSelector, then the request
   MAY include a LastModified value.  If the LastModified value is
   present in the DeleteRequest, then it MUST be the value which was
   most recently received in a corresponding DownloadResponse for that
   credential.  If the value does not match, then the server MUST NOT
   delete the credentials.

   If no "matching" credential exists, the server returns an error.

   The server responds to this request with an error or acknowledgement
   message.

2.3.  Miscellaneous

2.3.1.  Session Security

   Six SACRED operations are defined above.  In this section we specify
   the requirements for security for each of the operations (where
   supported).

        Operation                 Security REQUIRED
        ---------                 -----------------
        Information request       NONE
        Create account            Server authentication,
                                  Confidentiality, Integrity
        Remove account            Mutual authentication,
                                  Confidentiality, Integrity
        Modify account            Mutual authentication,
                                  Confidentiality, Integrity
        Credential upload         Mutual authentication,
                                  Confidentiality, Integrity
        Credential download       Mutual authentication,
                                  Confidentiality, Integrity
        Credential delete         Mutual authentication,
                                  Confidentiality, Integrity

   The security requirements can be met by several mechanisms.  This
   document REQUIRES credential servers to support TLS and DIGEST-MD5.
   Clients MUST support DIGEST-MD5 and TLS with server authentication.






RFC 3767              Secure Credentials Protocol              June 2004


   The mandatory-to-implement TLS cipher suite for SACRED is
   TLS_RSA_WITH_3DES-EDE_CBC_SHA.  Implementations SHOULD also support
   TLS_RSA_WITH_AES_128_CBC_SHA [TLSAES].

   When performing mutual authentication using DIGEST-MD5 for the
   client, DIGEST-MD5 MUST only be used "within" a TLS server-
   authenticated "pipe", and MUST only be used for client
   authentication.  That is, we do not use the DIGEST-MD5 security
   services (confidentiality, integrity etc.).

2.3.2.  Handling Multiple Credentials for an Account

   When more than one credential is stored under a single account, the
   client can select a single credential using the optional credential
   selector string.

   There is no concept of a "default credential" - all credentials MUST
   have an associated selector unique for that account.  The selector is
   REQUIRED for upload requests and OPTIONAL for download requests.  If
   the selector is omitted in a download request, it MUST be interpreted
   as a request for all the stored credentials.

   An empty selector string value (i.e. "") in a credential download
   request is to be interpreted as if the selector string were omitted,
   i.e. a download request containing this is a request for all
   credentials.

   It is an error to have more than one credential stored under the same
   account where both have the same credential selector string.

2.3.3.  Common Fields

   All messages sent to the server MAY contain ProcessInfo values.  This
   field MAY be used by other specifications or for vendor extensions.
   For example, a server might require clients to include a phone number
   in this field.  The information response message contains a list of
   the types of ProcessInfo that the server supports.  This
   extensibility scheme is similar to that used in [XKMS] and [XBULK].

   Where no specific response message is defined for an operation (e.g.
   for UploadRequest), then the transport will indicate success or
   failure.

   All of the response messages defined here MAY contain a Status
   string, containing a value intended for human consumption.






RFC 3767              Secure Credentials Protocol              June 2004


2.3.4.  Credential Format

   A number of messages involve the Credential element.  It has the
   following fields (all optional fields may occur exactly zero or one
   times unless otherwise stated):

   -  CredentialSelector contains a string by which this particular
      credential (for this account) can be identified.
   -  PayLoad contains either a ds:KeyInfo or some other form of
      credential.  Implementations MUST support the PKCS #15 form of
      ds:KeyInfo defined below (the SacredPKCS15 element).
   -  LastModified is a string containing the time (at the server) at
      which this credential was last modified.
   -  TimeToLive (optional) is a hint clients SHOULD honor, which
      specifies the number of seconds the downloaded credential is to be
      usable.
   -  ProcessInfo (optional) MAY contain any (typed) information that
      the server is intended to process.  If the server doesn't support
      any of the ProcessInfo data, it MAY ignore that data.
   -  ClientInfo (optional) MAY contain any (typed) information that the
      client is intended to process, but which the server MUST ignore.
      If the client doesn't support any of the ClientInfo data, it MAY
      ignore that data (e.g. if the ClientInfo is device specific).

3.  BEEP Profile for SACRED

   The protocol described in this memo is realized as a [BEEP] profile.

   Future memos may define alternative versions of the BEEP profile for
   SACRED.  When a BEEP peer sends its greeting, it indicates which
   profiles it is willing to support.  Accordingly, when the BEEP client
   asks to start a channel, it indicates the versions it supports, and
   if any of these are acceptable to the BEEP server; the latter
   specifies which profile it is starting.

   Profile Identification: http://iana.org/beep/sacred

   Messages Exchanged during Channel Creation:
        InfoRequest,
        CreateAccountRequest,
        RemoveAccountRequest,
        ModifyAccountRequest,
        DownloadRequest,
        UploadRequest,
        DeleteRequest,
        InfoResponse,





RFC 3767              Secure Credentials Protocol              June 2004


        DownloadResponse,
        error,
        ok

   Messages starting one-to-one exchanges:
        InfoRequest,
        CreateAccountRequest,
        RemoveAccountRequest,
        ModifyAccountRequest,
        DownloadRequest,
        UploadRequest,
        DeleteRequest

   Messages in positive replies:
        ok,
        InfoResponse,
        DownloadResponse

   Messages in negative replies: error

   Messages in one-to-many changes: none

   Message Syntax: c.f.,Section 3

   Message Semantics: c.f., Section 2

   Contact Information: c.f., the editor's address section of this memo

3.1.  Profile Initialization

   Because all but one of the operations of the SACRED profile have
   security requirements (cf., Section 2.3.1), before starting the
   SACRED profile, the BEEP session will likely be tuned using either

          http://iana.org/beep/TLS

          or

          http://iana.org/beep/TLS followed by
          http://iana.org/SASL/DIGEST-MD5

   Appendix B gives an example of tuning a BEEP session using DIGEST-
   MD5 (i.e. it shows how to turn on BEEP security).

   Regardless, upon completion of the negotiation process, a tuning
   reset occurs in which both BEEP peers issue a new greeting.  Consult
   Section 3 of [BEEP] for an example of how a BEEP peer may choose to
   issue different greetings based on whether confidentiality is in use.



RFC 3767              Secure Credentials Protocol              June 2004


   Any of the messages listed in section 3.2 below may be exchanged
   during channel initialization (c.f., Section 2.3.1.2 of [BEEP]),
   e.g.,

        C: <start number='1'>
        C:   <profile uri='http://iana.org/beep/sacred'>
        C:             <![CDATA[<DownloadRequest ...>]]>
        C:     </profile>
        C: </start>

        S: <profile uri='http://iana.org/beep/sacred'>
        S:   <![CDATA[<DownloadResponse ...>]]>
        S: </profile>

   Note that BEEP imposes both encoding and length limitations on the
   messages that are piggybacked during channel initialization.

3.2.  Profile Exchange

   All messages are exchanged as "application/beep+xml" (c.f., Section
   6.4 of [BEEP]):

   Role         MSG                   RPY                     ERR
   ----         ---                   ---                     ---
   I            InfoRequest           InfoResponse            error
   I            CreateAccountRequest  ok                      error
   I            RemoveAccountRequest  ok                      error
   I            ModifyAccountRequest  ok                      error
   I            DownloadRequest       DownloadResponse        error
   I            UploadRequest         ok                      error
   I            DeleteRequest         Ok                      error


3.3.  Error Handling

   The "error" message from Section 2.3.1.5 of [BEEP] is used to convey
   error information.  Typically, after flagging an error, a peer will
   initiate a graceful release of the BEEP session.

   The following BEEP error reply codes from [BEEP] are to be used:

    code  Meaning
    ====  =======
    421   service not available
    450   requested action not taken (e.g., lock already in
           use)
    451   requested action aborted (e.g., local error in
           processing)



RFC 3767              Secure Credentials Protocol              June 2004


    454   temporary authentication failure
    500   general syntax error (e.g., poorly-formed XML)
    501   syntax error in parameters (e.g., non-valid XML)
    504   parameter not implemented
    530   authentication required
    534   authentication mechanism insufficient (e.g., too
           weak, sequence exhausted, etc.)
    535   authentication failure
    537   action not authorized for user
    538   authentication mechanism requires encryption
    550   requested action not taken (e.g., no requested
           profiles are acceptable)
    553   parameter invalid
    554   transaction failed (e.g., policy violation)

   The following SACRED-specific error reply codes can also be used:

    code  Meaning
    ====  =======
    555   Extension (ProcessInfo) used not supported
    556   Required extension (ProcessInfo) not present
    557   StaleCredential (A bad LastModified value was
           contained in an UploadRequest.)

3.4.  SASL Authorization Identity

   The use of the SASL authorization identity in this protocol is
   implementation-specific.  If used, the authorization identity is not
   a substitute for the credential selector field, but may be used to
   affect authorization for access to credentials.

4.  IANA Considerations

   The IANA has registered the BEEP profile specified in Section 4.

      http://iana.org/beep/sacred

   The sacred protocol SHOULD be run over port 1118.

   The GSSAPI service name (required when using SASL) for this protocol
   SHALL be "sacred".










RFC 3767              Secure Credentials Protocol              June 2004


5.  Security Considerations

   [REQS] calls for specifications to state how they address the
   vulnerabilities listed below.

      V1.   A passive attacker can watch all packets on the network and
            later carry out a dictionary attack.
            - The use of DIGEST-MD5 and/or TLS counters this
            vulnerability.
      V2.   An attacker can attempt to masquerade as a credential server
            in an attempt to get a client to reveal information online
            that allows for a later dictionary attack.
            - The use of server or mutual authentication counters this
            vulnerability.
      V3.   An attacker can attempt to get a client to decrypt a chosen
            "ciphertext" and get the client to make use of the resulting
            plaintext - the attacker may then be able to carry out a
            dictionary attack (e.g. if the plaintext resulting from
            "decryption" of a random string is used as a DSA private
            key).
            - The use of server or mutual authentication counters this
            vulnerability.
      V4.   An attacker could overwrite a repository entry so that when
            a user subsequently uses what they think is a good
            credential, they expose information about their password
            (and hence the "real" credential).
            - Server implementations SHOULD take measures to protect the
            database.  Clients MAY use the ClientInfo field to store
            e.g. a signature over the Credential, which they then verify
            before using the private component.
      V5.   An attacker can copy a credential server's repository and
            carry out a dictionary attack.
            - Server implementations SHOULD take measures to protect the
            database.
      V6.   An attacker can attempt to masquerade as a client in an
            attempt to get a server to reveal information that allows
            for a later dictionary attack.
            - The mutual authentication requirements of this protocol
            counter this to a great extent.  Additionally, credential
            servers MAY choose to provide mechanisms that protect
            against online dictionary attacks against user account
            passwords, either by repeated access attempts to a single
            user account (varying the password) or by attempting to
            access many user accounts using the same password.
      V7.   An attacker can persuade a server that a successful login
            has occurred, even if it hasn't.
            - Client authentication prevents this.




RFC 3767              Secure Credentials Protocol              June 2004


      V8.   (Upload) An attacker can overwrite someone else's
            credentials on the server.
            - Only if they know the account password already (thanks to
            mutual authentication).
      V9.   (When using password-based authentication) An attacker can
            force a password change to a known (or "weak") password.
            - Client authentication counters this.
      V10.  An attacker can attempt a man-in-the-middle attack for lots
            of reasons...
            - Mutual authentication and the encryption of subsequent
            messages prevents this.
      V11.  User enters password instead of name.
            - Since the DIGEST-MD5 mechanism is only used after TLS
            tuning, the user's name is also protected.
      V12.  An attacker could attempt various denial-of-service attacks.
            - No specific countermeasures against DoS are proposed.

   If the CreateAccountRequest message were sent over a cleartext
   channel (or otherwise exposed), then an attacker could mount a
   dictionary attack and recover the account password.  This is why the
   server authenticated TLS transport is REQUIRED for this operation.

   If someone steals the server database they can launch a dictionary
   attack.  If the dictionary attack is successful, the attacker can
   decrypt the user's credentials.  An attacker that has learned the
   user's account password can also upload new credentials, assuming the
   user is authorized to modify the credentials, because someone who
   knows the user's account password is assumed to be the user.
   However, if someone steals the server database and is unsuccessful at
   obtaining the user's account password through a dictionary attack,
   they will be unable to upload new credentials.

   Credential servers SHOULD incorporate measures that act to counter
   denial of service attacks.  In particular, they SHOULD drop inactive
   connections and minimize the use of resources by un-authenticated
   connections.  A number of recommendations are listed at [DDOS].

   Various operations in the SACRED protocol depend upon server
   authentication being provided by server authenticated TLS.  SACRED
   clients SHOULD take care that the correct server is at the far end of
   the TLS "pipe" by performing the checks which are listed in section
   3.1 of RFC 2818 [RFC2818].  Clients SHOULD also include the optional
   BEEP serverName field in their "start" message and SHOULD then ensure
   that the BEEP serverName is consistent with the checks on the TLS
   server described in RFC 2818.  Failure to carry out these checks
   could allow a spoof server access to a user's credential.





RFC 3767              Secure Credentials Protocol              June 2004


   If the SACRED account password were to be used in some other, less
   secure protocol, using DIGEST-MD5, then it might appear to be the
   case that a man-in-the-middle (MITM) attack could be mounted.
   However, this is not the case since the DIGEST-MD5 client hash
   includes a client-selected "digest-uri-value", which in SACRED's case
   will be "sacred/<serverName>".  In a MITM attack, those values will
   be something else.  A MITM attack as described is therefore thwarted,
   because digest-uri-value wouldn't match what the SACRED server is
   expecting.

6.  References

6.1.  Normative References

   [BEEP]       Rose, M., "The Blocks Extensible Exchange Protocol
                Core", RFC 3080, March 2001.

   [DIGEST-MD5] Leach, P. and C. Newman, "Using Digest Authentication as
                a SASL Mechanism", RFC 2831, May 2000.

   [PKCS15]     "PKCS #15 v1.1: Cryptographic Token Information Syntax
                Standard," RSA Laboratories, June 2000.

   [REQS]       Arsenault, A. and S. Farrell, "Securely Available
                Credentials - Requirements", RFC 3157, August 2001.

   [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
                Requirement Levels", BCP 14, RFC 2119, March 1997.

   [SASL]       Myers, J., "Simple Authentication and Security Layer
                (SASL)", RFC 2222, October 1997.

   [TLS]        Dierks, T. and C. Allen, "The TLS Protocol - Version
                1.0", RFC 2246, January 1999.

   [TLSAES]     Chown, P., "Advanced Encryption Standard (AES)
                Ciphersuites for Transport Layer Security (TLS)", RFC
                3268, June 2002.

   [XMLDSIG]    Eastlake, 3rd, D., Reagle, J. and D. Solo, "(Extensible
                Mark-Up Language) XML-Signature Syntax and Processing",
                RFC 3275, March 2002.

   [XMLSCHEMA]  "XML Schema Part 1: Structures", D. Beech, M. Maloney,
                N. Mendelsohn, and H. Thompson.  W3C Recommendation, May
                2001.  Available at http://www.w3.org/TR/2001/REC-
                xmlschema-2-20010502/




RFC 3767              Secure Credentials Protocol              June 2004


6.2.  Informative References

   [DDOS]       "Recommendations for the Protection against Distributed
                Denial-of-Service Attacks in the Internet",
                http://www.iwar.org.uk/comsec/resources/dos/ddos_en.htm

   [RFC2818]    Rescorla, E., "HTTP over TLS", RFC 2818, May 2000.

   [RFC3760]    Gustafson, D., Just, M. and M. Nystrom, "Securely
                Available Credentials - Credential Server Framework,"
                RFC 3760, April 2004.

   [XKMS]       Hallam-Baker, P. (ed), "XML Key Management
                Specification", http://www.w3.org/TR/xkms2/

   [XBULK]      Hughes, M (ed), "XML Key Management Specification - Bulk
                Operation", http://www.w3.org/TR/xkms2-xbulk/

Acknowledgements

   Radia Perlman (radia.perlman@sun.com) and Charlie Kaufman
   (charliek@microsoft.com) co-authored earlier versions of this
   document.  Michael Zolotarev (mzolotar@tpg.com.au) did much of the
   initial work, adapting an earlier version to the use of SRP (though
   SRP was subsequently dropped, much of the framework survives).
   Marshall Rose (mrose@dbc.mtview.ca.us) helped out a lot, in
   particular, with the BEEP profile.  And the following people were
   actively involved in the mailing list discussions leading to this
   document:

        David Chizmadia,
        Dave Crocker (dcrocker@brandenburg.com),
        Lawrence Greenfield (leg+@andrew.cmu.edu),
        Dale Gustafson (degustafson@comcast.net),
        Mike Just (just.mike@tbs-sct.gc.ca),
        John Linn (jlinn@rsasecurity.com),
        Neal McBurnett (neal@bcn.boulder.co.us),
        Keith Moore (moore@cs.utk.edu),
        RL "Bob" Morgan (rlmorgan@washington.edu),
        Magnus Nystrom (magnus@rsasecurity.com),
        Eamon O'Tuathail (eamon.otuathail@clipcode.com),
        Gareth Richards (grichards@rsasecurity.com)

   Of course, any and all errors remain the editor's responsibility.







RFC 3767              Secure Credentials Protocol              June 2004


Appendix A: XML Schema

   <?xml version="1.0" encoding="UTF-8"?>
      <schema
        targetNamespace="urn:sacred-2002-12-19"
        xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
        xmlns:sacred="urn:sacred-2002-12-19"
        xmlns="http://www.w3.org/2001/XMLSchema">
        <import namespace="http://www.w3.org/2000/09/xmldsig#"
        schemaLocation=
        "http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd"/>
        <!-- extensibility holes -->
        <complexType name="ProcessInfoType">
         <sequence maxOccurs="unbounded">
          <any namespace="##other"/>
         </sequence>
        </complexType>
        <element name="ProcessInfo" type="sacred:ProcessInfoType"/>
        <complexType name="ClientInfoType">
         <sequence maxOccurs="unbounded">
          <any namespace="##other"/>
         </sequence>
        </complexType>
        <element name="ClientInfo" type="sacred:ClientInfoType"/>
        <!-- Where to put authenentication information -->
        <complexType name="AuthInfoType">
         <choice maxOccurs="unbounded">
          <element name="DigestMD5AuthInfo">
           <complexType>
            <sequence>
             <element name="PasswordVerifier" type="base64Binary"/>
             <element name="Realm" type="string" />
            </sequence>
           </complexType>
          </element>
          <any namespace="##other"/>
         </choice>
        </complexType>
        <element name="AuthInfo" type="sacred:AuthInfoType"/>
        <!-- authentication mechanism parameters -->
        <complexType name="AuthParamsType">
         <choice maxOccurs="unbounded">
          <element name=" DigestMD5AuthParams">
           <complexType>
            <sequence>
             <element name="Realm" type="string"
               minOccurs="1" maxOccurs="unbounded"/>
            </sequence>



RFC 3767              Secure Credentials Protocol              June 2004


           </complexType>
          </element>
          <any namespace="##other"/>
         </choice>
        </complexType>
        <element name="AuthParams" type="sacred:AuthParamsType"/>
        <!-- Protocol messsages -->
        <!-- "account handling" operations -->
        <!-- Information request -->
        <element name="InfoRequest"/>
        <element name="InfoResponse">
         <complexType>
          <sequence>
           <element name="Status" type="string" minOccurs="0"/>
           <element name="ServerId" type="string"/>
           <element ref="sacred:AuthParams"/>
           <element ref="sacred:ProcessInfo" minOccurs="0"/>
          </sequence>
         </complexType>
        </element>
        <!-- Create Account Request -->
        <element name="CreateAccountRequest">
         <complexType>
          <sequence>
           <element name="UserId" type="string"/>
           <element ref="sacred:AuthInfo"/>
           <element ref="sacred:ProcessInfo" minOccurs="0"/>
          </sequence>
         </complexType>
        </element>
        <!-- remove account request -->
        <element name="RemoveAccountRequest">
         <complexType>
          <sequence>
           <element ref="sacred:ProcessInfo" minOccurs="0"/>
          </sequence>
         </complexType>
        </element>
        <!-- password change request -->
        <element name="ModifyAccountRequest">
         <complexType>
          <sequence>
           <element ref="sacred:AuthInfo"/>
           <element ref="sacred:ProcessInfo" minOccurs="0"/>
          </sequence>
         </complexType>
        </element>
        <!-- "run-time" operations -->



RFC 3767              Secure Credentials Protocol              June 2004


        <!-- DownLoad Request -->
        <element name="DownloadRequest">
         <complexType>
          <sequence>
           <element name="CredentialSelector" type="string"
             minOccurs="0"/>
           <element ref="sacred:ProcessInfo" minOccurs="0"/>
          </sequence>
         </complexType>
        </element>
        <!-- Download Response -->
        <element name="DownloadResponse">
         <complexType>
          <sequence>
           <element name="Status" type="string" minOccurs="0"/>
           <element name="Credential" type="sacred:CredentialType"
            maxOccurs="unbounded"/>
          </sequence>
         </complexType>
        </element>
        <!-- Upload request -->
        <element name="UploadRequest">
         <complexType>
          <sequence>
           <element name="Credential" type="sacred:CredentialType"/>
          </sequence>
         </complexType>
        </element>
        <element name="DeleteRequest">
          <complexType>
            <sequence>
              <choice>
                <sequence>
                  <element name="CredentialSelector" type="string"/>
                  <element name="LastModified" type="dateTime"
                        minOccurs="0"/>
                </sequence>
                <element name="All"/>
              </choice>
              <element ref="sacred:ProcessInfo" minOccurs="0"/>
            </sequence>
          </complexType>
        </element>
        <!-- Credential related structures -->
        <!-- A new ds:KeyInfo thing -->
        <element name="SacredPKCS15" type="base64Binary"/>
        <!-- credential -->
        <complexType name="CredentialType">



RFC 3767              Secure Credentials Protocol              June 2004


         <sequence>
          <element name="CredentialSelector" type="string"/>
          <element name="LastModified" type="dateTime"/>
          <element name="Payload" type="ds:KeyInfoType" minOccurs="0"/>
          <element name="TimeToLive" type="string" minOccurs="0"/>
          <element ref="sacred:ProcessInfo" minOccurs="0"/>
          <element ref="sacred:ClientInfo" minOccurs="0"/>
         </sequence>
        </complexType>

   </schema>

Appendix B: An Example of Tuning with BEEP

   Here is what tuning BEEP for authentication and confidentiality
   looks like using TLS and SASL's DIGEST-MD5:

   L: <wait for incoming connection>
   I: <open connection>

    ... each peer sends a greeting indicating the services that
       it offers ...

   L: RPY 0 0 . 0 233
   L: Content-Type: application/beep+xml
   L:
   L: <greeting>
   L:    <profile uri='http://iana.org/beep/SASL/DIGEST-MD5' />
   L:    <profile uri='http://iana.org/beep/TLS' />
   L:    <profile uri='http://iana.org/beep/sacred' />
   L: </greeting>
   L: END
   I: RPY 0 0 . 0 52
   I: Content-Type: application/beep+xml
   I:
   I: <greeting />
   I: END


    ... the initiator starts a channel for TLS and piggybacks a request
       to start the TLS negotiation ...

   I: MSG 0 1 . 52 149
   I: Content-Type: application/beep+xml
   I:
   I: <start number='1' serverName="sacred.example.org">
   I:    <profile uri='http://iana.org/beep/TLS'>
   I:        &lt;ready />



RFC 3767              Secure Credentials Protocol              June 2004


   I:    </profile>
   I: </start>
   I: END

    ... the listener creates the channel and piggybacks its readiness to
       start TLS ...

   L: RPY 0 1 . 233 112
   L: Content-Type: application/beep+xml
   L:
   L: <profile uri='http://iana.org/beep/TLS'>
   L:     &lt;proceed />
   L: </profile>
   L: END

    ... upon receiving the reply, the initiator starts up TLS ...

    ... successful transport security negotiation ...

    ... a new greeting is sent (cf., Section 9 of RFC 3080), note that
       the listener no longer advertises TLS (we're already running
       it)

   L: RPY 0 0 . 0 186
   L: Content-Type: application/beep+xml
   L:
   L: <greeting>
   L:    <profile uri='http://iana.org/beep/SASL/DIGEST-MD5' />
   L:    <profile uri='http://iana.org/beep/sacred' />
   L: </greeting>
   L: END
   I: RPY 0 0 . 0 52
   I: Content-Type: application/beep+xml
   I:
   I: <greeting />
   I: END


    ... the initiator starts a channel for DIGEST-MD5 and piggybacks
       initialization information for the mechanism ...

   I: MSG 0 1 . 52 178
   I: Content-Type: application/beep+xml
   I:
   I: <start number='1'>
   I:    <profile uri='http://iana.org/beep/SASL/DIGEST-MD5'>
   I:        &lt;blob> ... &lt;/blob>
   I:    </profile>



RFC 3767              Secure Credentials Protocol              June 2004


   I: </start>
   I: END

    ... the listener creates the channel and piggybacks a challenge ...

   L: RPY 0 1 . 186 137
   L: Content-Type: application/beep+xml
   L:
   L: <profile uri='http://iana.org/beep/SASL/DIGEST-MD5'>
   L:     &lt;blob> ... &lt;/blob>
   L: </profile>
   L: END

    ... the initiator sends a response to the challenge ...

   I: MSG 1 0 . 0 58
   I: Content-Type: application/beep+xml
   I:
   I: <blob> ... </blob>
   I: END

    ... the listener accepts the challenge and tells the initiator
       that it is now authenticated ...

   L: RPY 1 0 . 0 66
   L: Content-Type: application/beep+xml
   L:
   L: <blob status='complete' />
   L: END


    ... the initiator starts a channel for SACRED and piggybacks its
       initial SACRED request ...

   I: MSG 0 2 . 230 520
   I: Content-Type: application/beep+xml
   I:
   I: <start number='3'>
   I:    <profile uri='http://iana.org/beep/sacred' />
   I:        &lt;?xml version="1.0" encoding="UTF-8"?>
   I:        &lt;sacred:DownloadRequest
   I:          xmlns:sacred="urn:sacred-2002-12-19"
   I:          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   I:          xsi:schemaLocation="urn:sacred-2002-12-19 sacred.xsd">
   I:          &lt;CredentialSelector>
   I:                      magnus-credentials&lt;/CredentialSelector>
   I:        &lt;/sacred:DownloadRequest>
   I: </start>



RFC 3767              Secure Credentials Protocol              June 2004


   I: END

    ... the listener creates the channel and piggybacks the response to
   the initial SACRED request

   L: RPY 0 2 . 323 805
   L: Content-Type: application/beep+xml
   L:
   L: <profile uri='http://iana.org/beep/sacred' />
   L:     &lt;?xml version="1.0" encoding="UTF-8"?>
   L:     &lt;sacred:DownloadResponse
   L:       xmlns:sacred="urn:sacred-2002-12-19"
   L:       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   L:       xsi:schemaLocation="urn:sacred-2002-12-19 sacred.xsd">
   L:       &lt;Status>Success&lt;/Status>
   L:       &lt;Credential>
   L:         &lt;CredentialSelector>
   L:              magnus-credential&lt;/CredentialSelector>
   L:         &lt;LastModified>2002-11-22T00:00:08Z&lt;/LastModified>
   L:         &lt;Payload>
   L:             &lt;sacred:SacredPKCS15
   L:               xmlns:sacred="urn:sacred-2002-12-19">GpM7
   L:             &lt;/sacred:SacredPKCS15>
   L:         &lt;/Payload>
   L:       &lt;/Credential>
   L:     &lt;/sacred:DownloadResponse>
   L: </profile>
   L: END

Appendix C: Provision SACRED using other Protocols

   SACRED may be implemented in a non-BEEP environment, provided that
   before any SACRED PDUs are sent, the application protocol must be
   protected according to the security mandates provided in Section 2.3.

   For example, if SACRED is provisioned as the payload of an
   application protocol that supports SASL and TLS, then the appropriate
   SASL and/or TLS negotiation must successfully occur before exchanging
   Sacred PDUs.

   Alternatively, if the application protocol doesn't support SASL, then
   one or more PDUs are defined to facilitate a SASL negotiation, and
   the appropriate negotiation must occur before exchanging Sacred PDUs.








RFC 3767              Secure Credentials Protocol              June 2004


Editor's Address

   Stephen Farrell,
   Distributed Systems Group,
   Computer Science Department,
   Trinity College Dublin,
   IRELAND
   Phone: +353-1-608-3070
   EMail: stephen.farrell@cs.tcd.ie










































RFC 3767              Secure Credentials Protocol              June 2004


Full Copyright Statement

   Copyright (C) The Internet Society (2004).  This document is subject
   to the rights, licenses and restrictions contained in BCP 78, and
   except as set forth therein, the authors retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.