Rfc | 2949 |
Title | Telnet Encryption: CAST-128 64 bit Output Feedback |
Author | J. Altman |
Date | September 2000 |
Format: | TXT, HTML |
Status: | PROPOSED STANDARD |
|
Network Working Group J. Altman
Request for Comments: 2949 Columbia University
Category: Standards Track September 2000
Telnet Encryption: CAST-128 64 bit Output Feedback
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
Abstract
This document specifies how to use the CAST-128 encryption algorithm
in output feedback mode with the telnet encryption option. Two key
sizes are defined: 40 bit and 128 bit.
1. Command Names and Codes
Encryption Type
CAST5_40_OFB64 9
CAST128_OFB64 11
Suboption Commands
OFB64_IV 1
OFB64_IV_OK 2
OFB64_IV_BAD 3
2. Command Meanings
IAC SB ENCRYPT IS CAST5_40_OFB64 OFB64_IV <initial vector> IAC SE
IAC SB ENCRYPT IS CAST128_OFB64 OFB64_IV <initial vector> IAC SE
The sender of this command generates a random 8 byte initial
vector, and sends it to the other side of the connection using the
OFB64_IV command. The initial vector is sent in clear text. Only
the side of the connection that is WILL ENCRYPT may send the
OFB64_IV command.
IAC SB ENCRYPT REPLY CAST5_40_OFB64 OFB64_IV_OK IAC SE
IAC SB ENCRYPT REPLY CAST128_OFB64 OFB64_IV_OK IAC SE
IAC SB ENCRYPT REPLY CAST5_40_OFB64 OFB64_IV_BAD IAC SE
IAC SB ENCRYPT REPLY CAST128_OFB64 OFB64_IV_BAD IAC SE
The sender of these commands either accepts or rejects the initial
vector received in a OFB64_IV command. Only the side of the
connection that is DO ENCRYPT may send the OFB64_IV_OK and
OFB64_IV_BAD commands. The OFB64_IV_OK command MUST be sent for
backwards compatibility with existing implementations; there
really isn't any reason why a sender would need to send the
OFB64_IV_BAD command except in the case of a protocol violation
where the IV sent was not of the correct length (i.e., 8 bytes).
3. Implementation Rules
Once a OFB64_IV_OK command has been received, the WILL ENCRYPT side
of the connection should do keyid negotiation using the ENC_KEYID
command. Once the keyid negotiation has successfully identified a
common keyid, then START and END commands may be sent by the side of
the connection that is WILL ENCRYPT. Data will be encrypted using
the CAST128 64 bit Output Feedback algorithm.
If encryption (decryption) is turned off and back on again, and the
same keyid is used when re-starting the encryption (decryption), the
intervening clear text must not change the state of the encryption
(decryption) machine.
If a START command is sent (received) with a different keyid, the
encryption (decryption) machine must be re-initialized immediately
following the end of the START command with the new key and the
initial vector sent (received) in the last OFB64_IV command.
If a new OFB64_IV command is sent (received), and encryption
(decryption) is enabled, the encryption (decryption) machine must be
re-initialized immediately following the end of the OFB64_IV command
with the new initial vector, and the keyid sent (received) in the
last START command.
If encryption (decryption) is not enabled when a OFB64_IV command is
sent (received), the encryption (decryption) machine must be re-
initialized after the next START command, with the keyid sent
(received) in that START command, and the initial vector sent
(received) in this OFB64_IV command.
4. Algorithm
CAST 64 bit Output Feedback
key --->+------+
+->| CAST |--+
| +------+ |
+------------+
v
INPUT --------->(+) ----> DATA
Given:
iV: Initial vector, 64 bits (8 bytes) long.
Dn: the nth chunk of 64 bits (8 bytes) of data to encrypt
(decrypt).
On: the nth chunk of 64 bits (8 bytes) of encrypted (decrypted)
output.
V0 = CAST(iV, key)
V(n+1) = CAST(Vn, key)
On = Dn ^ Vn
5. Integration with the AUTHENTICATION telnet option
As noted in the telnet ENCRYPTION option specifications, a keyid
value of zero indicates the default encryption key, as might be
derived from the telnet AUTHENTICATION option. If the default
encryption key negotiated as a result of the telnet AUTHENTICATION
option contains less than 16 (5) bytes, then the CAST128_OFB64
(CAST5_40_OFB64) option must not be offered or used as a valid telnet
encryption option.
If there are less than 32 (10) bytes of key data, the first 16 (5)
bytes of key data are used as keyid 0 in each direction. If there
are at least 32 (10) bytes of key data, the first 16 (5) bytes of key
data are used to encrypt the data sent by the telnet client to the
telnet server; the second 16 (5) bytes of key data are used to
encrypt the data sent by the telnet server to the telnet client.
Any extra key data is used as random data to be sent as an
initialization vector.
6. Security Considerations
Encryption using Output Feedback does not ensure data integrity; an
active attacker may be able to substitute text, if he can predict the
clear-text that was being transmitted.
The tradeoff here is that adding a message authentication code (MAC)
will significantly increase the number of bytes needed to send a
single character in the telnet protocol, which will impact
performance on slow (i.e. dialup) links.
This option was originally drafted back when CPU speeds where not
necessarily fast enough to do allow use of CFB. Since then, CPU's
have gotten much faster. Given the inherent weaknesses in Output
Feedback mode, perhaps it should be deprecated in favor of CFB modes?
Encryption modes using 40-bit keys are not to be considered secure.
The 40 bit key mode CAST5_40_OFB64 is listed here simply to document
the implementations that are already prevalent on the Internet but
have never been documented.
7. Acknowledgments
This document was based on the "Telnet Encryption: DES 64 bit Output
Feedback" document originally written by Dave Borman of Cray Research
with the assistance of the IETF Telnet Working Group.
8. References
[1] Adams, C., "The CAST-128 Encryption Algorithm", RFC 2144, May
1997.
Author's Address
Jeffrey Altman, Editor
Columbia University
612 West 115th Street Room 716
New York NY 10025 USA
Phone: +1 (212) 854-1344
EMail: jaltman@columbia.edu
Full Copyright Statement
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.