Rfc | 8060 |
Title | LISP Canonical Address Format (LCAF) |
Author | D. Farinacci, D. Meyer, J.
Snijders |
Date | February 2017 |
Format: | TXT, HTML |
Updated by | RFC9306 |
Status: | EXPERIMENTAL |
|
Internet Engineering Task Force (IETF) D. Farinacci
Request for Comments: 8060 lispers.net
Category: Experimental D. Meyer
ISSN: 2070-1721 Brocade
J. Snijders
NTT
February 2017
LISP Canonical Address Format (LCAF)
Abstract
This document defines a canonical address format encoding used in
Locator/ID Separation Protocol (LISP) control messages and in the
encoding of lookup keys for the LISP Mapping Database System.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not
all documents approved by the IESG are a candidate for any level of
Internet Standard; see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc8060.
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
1. Introduction
The LISP architecture and protocol [RFC6830] introduces two new
numbering spaces: Endpoint Identifiers (EIDs) and Routing Locators
(RLOCs). To provide flexibility for current and future applications,
these values can be encoded in LISP control messages using a general
syntax that includes Address Family Identifier (AFI), length, and
value fields.
Currently defined AFIs include IPv4 and IPv6 addresses, which are
formatted according to code-points assigned in the "Address Family
Numbers" registry [AFN] as follows:
IPv4-Encoded Address:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 1 | IPv4 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv4 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
IPv6-Encoded Address:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 2 | IPv6 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This document describes the currently defined AFIs that LISP uses
along with their encodings and introduces the LISP Canonical Address
Format (LCAF) that can be used to define the LISP-specific encodings
for arbitrary AFI values.
Specific detailed uses for the LCAF Types defined in this document
can be found in the use-case documents that implement them. The same
LCAF Type may be used by more than one use-case document. As an
Experimental specification, this work is, by definition, incomplete.
The LCAF Types defined in this document are to support
experimentation and are intended for cautious use in self-contained
environments in support of the corresponding use-case documents.
This document provides assignment for an initial set of approved LCAF
Types (registered with IANA) and additional unapproved LCAF Types
[RFC6830]. The unapproved LCAF encodings are defined to support
further study and experimentation.
2. Terminology
2.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
2.2. Definition of Terms
Address Family Identifier (AFI): a term used to describe an address
encoding in a packet. Address families are defined for IPv4 and
IPv6. See [AFN] and [RFC3232] for details. The reserved AFI
value of 0 is used in this specification to indicate an
unspecified encoded address where the length of the address is 0
bytes following the 16-bit AFI value of 0.
Unspecified Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 0 | <no address follows>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value
used in the source and destination address fields of the first
(most inner) LISP header of a packet. The host obtains a
destination EID the same way it obtains a destination address
today, for example, through a DNS lookup or SIP exchange. The
source EID is obtained via existing mechanisms used to set a
host's "local" IP address. An EID is allocated to a host from an
EID-prefix block associated with the site where the host is
located. An EID can be used by a host to refer to other hosts.
Routing Locator (RLOC): the IPv4 or IPv6 address of an Egress Tunnel
Router (ETR). It is the output of an EID-to-RLOC mapping lookup.
An EID maps to one or more RLOCs. Typically, RLOCs are numbered
from topologically aggregatable blocks that are assigned to a site
at each point to which it attaches to the global Internet; where
the topology is defined by the connectivity of provider networks,
RLOCs can be thought of as Provider-Assigned (PA) addresses.
Multiple RLOCs can be assigned to the same ETR device or to
multiple ETR devices at a site.
3. LISP Canonical Address Format Encodings
IANA has assigned AFI value 16387 (0x4003) to the LISP Canonical
Address Format (LCAF). This specification defines the encoding
format of the LISP Canonical Address (LCA). This section defines all
Types for which an initial allocation in the LISP-LCAF registry is
requested. See Section 7 for the complete list of such Types.
The AFI definitions in [AFN] only allocate code-points for the AFI
value itself. The length of the address or entity that follows is
not defined and is implied based on conventional experience. When
LISP uses LCAF definitions from this document, the AFI-based address
lengths are specified in this document. When new LCAF definitions
are defined in other use-case documents, the AFI-based address
lengths for any new AFI-encoded addresses are specified in those
documents.
The first 6 bytes of a LISP Canonical Address are followed by a
variable number of fields of variable length:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Rsvd1/Rsvd2: these 8-bit fields are reserved for future use and MUST
be transmitted as 0 and ignored on receipt.
Flags: this 8-bit field is for future definition and use. For now,
set to zero on transmission and ignored on receipt.
Type: this 8-bit field is specific to the LISP Canonical Address
Format encodings. Both approved and unapproved values are listed
below. Unapproved values are indicated; see Section 5 for more
details.
Type 0: Null Body
Type 1: AFI List
Type 2: Instance ID
Type 3: AS Number
Type 4: Application Data (unapproved; see Section 5)
Type 5: Geo-Coordinates
Type 6: Opaque Key (unapproved; see Section 5)
Type 7: NAT-Traversal
Type 8: Nonce Locator (unapproved; see Section 5)
Type 9: Multicast Info
Type 10: Explicit Locator Path
Type 11: Security Key
Type 12: Source/Dest Key
Type 13: Replication List Entry
Type 14: JSON Data Model (unapproved; see Section 5)
Type 15: Key/Value Address Pair (unapproved; see Section 5)
Type 16: Encapsulation Format (unapproved; see Section 5)
Length: this 16-bit field is in units of bytes and covers all of the
LISP Canonical Address payload, starting and including the byte
after the Length field. When including the AFI, an LCAF-encoded
address will have a minimum length of 8 bytes when the Length
field is 0. The 8 bytes include the AFI, Flags, Type, Rsvd1,
Rsvd2, and Length fields. When the AFI is not next to an encoded
address in a control message, the encoded address will have a
minimum length of 6 bytes when the Length field is 0. The 6 bytes
include the Flags, Type, Rsvd1, Rsvd2, and Length fields.
[RFC6830] states RLOC-records based on an IP address are sorted when
encoded in control messages, so the locator-set has consistent order
across all xTRs for a given EID. The sort order is based on sort-key
{afi, RLOC-address}. When an RLOC based on an IP address is LCAF
encoded, the sort-key is {afi, LCAF-Type}. Therefore, when a
locator-set has a mix of AFI records and LCAF records, they are
ordered from smallest to largest AFI value.
4. LISP Canonical Address Applications
The following sections define the LCAF for the currently approved
initial set of Type values.
4.1. Segmentation Using LISP
When multiple organizations inside of a LISP site are using private
addresses [RFC1918] as EID prefixes, their address spaces must remain
segregated due to possible address duplication. An Instance ID in
the address encoding can aid in making the entire AFI-based address
unique.
Another use for the Instance ID LISP Canonical Address Format is when
creating multiple segmented VPNs inside of a LISP site where keeping
EID-prefix-based subnets is desirable.
Instance ID LISP Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 | IID mask-len | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Instance ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
IID mask-len: if the AFI is set to 0, then this format is not
encoding an extended EID prefix, but rather an Instance ID range
where the 'IID mask-len' indicates the number of high-order bits
used in the Instance ID field for the range. The low-order bits
of the Instance ID field must be 0.
Length: length in bytes starting and including the byte after this
Length field.
Instance ID: the low-order 24 bits that can go into a LISP data
header when the I bit is set. See [RFC6830] for details. The
reason for the length difference is so that the maximum number of
instances supported per mapping system is 2^32, while conserving
space in the LISP data header. This comes at the expense of
limiting the maximum number of instances per xTR to 2^24. If an
xTR is configured with multiple Instance IDs where the value in
the high-order 8 bits is the same, then the low-order 24 bits MUST
be unique.
AFI = x: x can be any AFI value from [AFN].
This LISP Canonical Address Type can be used to encode either EID or
RLOC addresses.
Usage: When used as a lookup key, the EID is regarded as an extended-
EID in the mapping system. This encoding is used in EID-records in
Map-Request, Map-Reply, Map-Register, and Map-Notify messages. When
LISP Delegated Database Tree (LISP-DDT) [LISP-DDT] is used as the
mapping system mechanism, extended EIDs are used in Map-Referral
messages.
4.2. Carrying AS Numbers in the Mapping Database
When an Autonomous System (AS) number is stored in the LISP Mapping
Database System for either policy or documentation reasons, it can be
encoded in a LISP Canonical Address.
AS Number LISP Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 3 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AS Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
AS Number: the 32-bit AS number of the autonomous system that has
been assigned to either the EID or RLOC that follows.
AFI = x: x can be any AFI value from [AFN].
The AS Number LCAF Type can be used to encode either EID or RLOC
addresses. The former is used to describe the LISP-ALT AS number the
EID prefix for the site is being carried for. The latter is used to
describe the AS that is carrying RLOC based prefixes in the
underlying routing system.
Usage: This encoding can be used in EID-records or RLOC-records in
Map-Request, Map-Reply, Map-Register, and Map-Notify messages. When
LISP-DDT [LISP-DDT] is used as the mapping system mechanism, extended
EIDs are used in Map-Referral messages.
4.3. Assigning Geo-Coordinates to Locator Addresses
If an ETR desires to send a Map-Reply describing the Geo-Coordinates
for each locator in its locator-set, it can use the Geo-Coordinates
LCAF Type to convey physical location information.
Coordinates are specified using the WGS 84 (World Geodetic System
1984) reference coordinate system [WGS-84].
Geo-Coordinates LISP Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 5 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|N| Latitude Degrees | Minutes | Seconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|E| Longitude Degrees | Minutes | Seconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Altitude |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
N: When set to 1 means north; otherwise, south.
Latitude Degrees: Valid values range from 0 to 90 degrees above or
below the equator (northern or southern hemisphere, respectively).
Latitude Minutes: Valid values range from 0 to 59.
Latitude Seconds: Valid values range from 0 to 59.
E: When set to 1 means east; otherwise, west.
Longitude Degrees: Valid values are from 0 to 180 degrees right or
left of the Prime Meridian.
Longitude Minutes: Valid values range from 0 to 59.
Longitude Seconds: Valid values range from 0 to 59.
Altitude: Height relative to sea level in meters. This is a two's
complement signed integer meaning that the altitude could be below
sea level. A value of 0x7fffffff indicates no Altitude value is
encoded.
AFI = x: x can be any AFI value from [AFN].
The Geo-Coordinates LCAF Type can be used to encode either EID or
RLOC addresses. When used for EID encodings, you can determine the
physical location of an EID along with the topological location by
observing the locator-set.
Usage: This encoding can be used in EID-records or RLOC-records in
Map-Request, Map-Reply, Map-Register, and Map-Notify messages. When
LISP-DDT [LISP-DDT] is used as the mapping system mechanism, extended
EIDs are used in Map-Referral messages.
The use of the Geo-Coordinates LCAF encoding raises privacy issues as
location information is privacy sensitive, and possibly unexpectedly
privacy-sensitive information may be conveyed, e.g., if the location
information corresponds to a router located in a person's home.
Therefore, this encoding should not be used unless needed for
operation of a LISP deployment. Before electing to utilize this
encoding, care should be taken to ensure the appropriate policies are
being used by the EID for controlling the conveyed information.
4.4. NAT Traversal Scenarios
When a LISP system is conveying global-address and mapped-port
information when traversing through a NAT device, the NAT-Traversal
LCAF Type is used. See [NAT-LISP] for details.
NAT-Traversal Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 7 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MS UDP Port Number | ETR UDP Port Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Global ETR RLOC Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | MS RLOC Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Private ETR RLOC Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | RTR RLOC Address 1 ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | RTR RLOC Address k ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
MS UDP Port Number: this is the UDP port number of the Map-Server
and is set to 4342.
ETR UDP Port Number: this is the port number returned to a LISP
system that was copied from the source port from a packet that has
flowed through a NAT device.
AFI = x: x can be any AFI value from [AFN].
Global ETR RLOC Address: this is an address known to be globally
unique built by NAT-traversal functionality in a LISP router.
MS RLOC Address: this is the address of the Map-Server used in the
destination RLOC of a packet that has flowed through a NAT device.
Private ETR RLOC Address: this is an address known to be a private
address inserted in this LCAF by a LISP router that resides on the
private side of a NAT device.
RTR RLOC Address: this is an encapsulation address used by an
Ingress Tunnel Router (ITR) or Proxy Ingress Tunnel Router (PITR)
that resides behind a NAT device. This address is known to have
state in a NAT device so packets can flow from it to the LISP ETR
behind the NAT. There can be one or more NAT Re-encapsulating
Tunnel Router (RTR) [NAT-LISP] addresses supplied in these set of
fields. The number of RTRs encoded is determined by parsing each
field. When there are no RTRs supplied, the RTR fields can be
omitted and reflected by the LCAF length field or an AFI of 0 can
be used to indicate zero RTRs encoded.
Usage: This encoding can be used in Info-Request and Info-Reply
messages. The mapping system does not store this information. The
information is used by an xTR and Map-Server to convey private and
public address information when traversing NAT and firewall devices.
Care should be taken to protect privacy against the adverse use of a
Global or Private ETR RLOC Address by ensuring policy controls are
used during EID registrations that use this LCAF Type in RLOC-
records. Refer to the use-case documents for additional information.
4.5. Multicast Group Membership Information
Multicast group information can be published in the mapping database.
So a lookup on a group address EID can return a replication list of
RLOC group addresses or RLOC unicast addresses. The intent of this
type of unicast replication is to deliver packets to multiple ETRs at
receiver LISP multicast sites. The locator-set encoding for this
EID-record Type can be a list of ETRs when they each register with
"Merge Semantics". The encoding can be a typical AFI-encoded locator
address. When an RTR list is being registered (with multiple levels
according to [LISP-RE]), the Replication List Entry LCAF Type is used
for locator encoding.
This LCAF encoding can be used to send broadcast packets to all
members of a subnet when an EID is away from its home subnet
location.
Multicast Info Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 9 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Instance ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Source MaskLen| Group MaskLen |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Source/Subnet Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Group Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
Reserved: must be set to zero and ignored on receipt.
Instance ID: the low-order 24 bits that can go into a LISP data
header when the I bit is set. See [RFC6830] for details. The use
of the Instance ID in this LCAF Type is to associate a multicast
forwarding entry for a given VPN. The Instance ID describes the
VPN and is registered to the mapping database system as a 3-tuple
of (Instance ID, S-prefix, G-prefix).
Source MaskLen: the mask length of the source prefix that follows.
The length is the number of high-order mask bits set.
Group MaskLen: the mask length of the group prefix that follows.
The length is the number of high-order mask bits set.
AFI = x: x can be any AFI value from [AFN]. When a specific address
family has a multicast address semantic, this field must be either
a group address or a broadcast address.
Source/Subnet Address: the source address or prefix for encoding an
(S,G) multicast entry.
Group Address: the group address or group prefix for encoding (S,G)
or (*,G) multicast entries.
Usage: This encoding can be used in EID-records in Map-Request, Map-
Reply, Map-Register, and Map-Notify messages. When LISP-DDT
[LISP-DDT] is used as the mapping system mechanism, extended EIDs are
used in Map-Referral messages.
4.6. Traffic Engineering Using Re-encapsulating Tunnels
For a given EID lookup into the mapping database, this LCAF can be
returned to provide a list of locators in an explicit
re-encapsulation path. See [LISP-TE] for details.
Explicit Locator Path (ELP) Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 10 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Rsvd3 |L|P|S| AFI = x |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reencap Hop 1 ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Rsvd3 |L|P|S| AFI = x |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reencap Hop k ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
Rsvd3: this field is reserved for future use and MUST be transmitted
as 0 and ignored on receipt.
Lookup bit (L): this is the Lookup bit used to indicate to the user
of the ELP not to use this address for encapsulation but to look
it up in the mapping database system to obtain an encapsulating
RLOC address.
RLOC Probe bit (P): this is the RLOC Probe bit that means the
Reencap Hop allows RLOC-probe messages to be sent to it. When the
R bit is set to 0, RLOC-probes must not be sent. When a Reencap
Hop is an anycast address then multiple physical Reencap Hops are
using the same RLOC address. In this case, RLOC-probes are not
needed because when the closest RLOC address is not reachable,
another RLOC address can be reachable.
Strict bit (S): this is the Strict bit, which means the associated
Reencap Hop is required to be used. If this bit is 0, the
re-encapsulator can skip this Reencap Hop and go to the next one
in the list.
AFI = x: x can be any AFI value from [AFN]. When a specific AFI has
its own encoding of a multicast address, this field must be either
a group address or a broadcast address.
Usage: This encoding can be used in RLOC-records in Map-Request, Map-
Reply, Map-Register, and Map-Notify messages. This encoding does not
need to be understood by the mapping system for mapping database
lookups, since this LCAF Type is not a lookup key.
4.7. Storing Security Data in the Mapping Database
When a locator in a locator-set has a security key associated with
it, this LCAF will be used to encode key material. See [LISP-DDT]
for details.
Security Key Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 11 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Length | Key Material ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... Key Material |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Locator Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
Key Count: the Key Count field declares the number of Key sections
included in this LCAF. A Key section is made up of Key Length and
Key Material fields.
Rsvd3: this field is reserved for future use and MUST be transmitted
as 0 and ignored on receipt.
Key Algorithm: the Key Algorithm field identifies the key's
cryptographic algorithm and specifies the format of the Public Key
field. Refer to the [LISP-DDT] and [RFC8061] use cases for
definitions of this field.
Rsvd4: this field is reserved for future use and MUST be transmitted
as 0 and ignored on receipt.
R bit: this is the Revoke bit and, if set, it specifies that this
key is being revoked.
Key Length: this field determines the length in bytes of the Key
Material field.
Key Material: the Key Material field stores the key material. The
format of the key material stored depends on the Key Algorithm
field.
AFI = x: x can be any AFI value from [AFN]. This is the locator
address that owns the encoded security key.
Usage: This encoding can be used in EID-records or RLOC-records in
Map-Request, Map-Reply, Map-Register, and Map-Notify messages. When
LISP-DDT [LISP-DDT] is used as the mapping system mechanism, extended
EIDs are used in Map-Referral messages.
4.8. Source/Destination 2-Tuple Lookups
When both a source and destination address of a flow need
consideration for different locator-sets, this 2-tuple key is used in
EID fields in LISP control messages. When the Source/Dest key is
registered to the mapping database, it can be encoded as a source-
prefix and destination-prefix. When the Source/Dest is used as a key
for a mapping database lookup, the source and destination come from a
data packet.
Source/Dest Key Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 12 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Source-ML | Dest-ML |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Source-Prefix ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = y | Destination-Prefix ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
Reserved: must be set to zero and ignored on receipt.
Source-ML: the mask length of the source prefix that follows. The
length is the number of high-order mask bits set.
Dest-ML: the mask length of the destination prefix that follows.
The length is the number of high-order mask bits set.
AFI = x: x can be any AFI value from [AFN].
AFI = y: y can be any AFI value from [AFN]. When a specific address
family has a multicast address semantic, this field must be either
a group address or a broadcast address.
Usage: This encoding can be used in EID-records in Map-Request, Map-
Reply, Map-Register, and Map-Notify messages. When LISP-DDT
[LISP-DDT] is used as the mapping system mechanism, extended EIDs are
used in Map-Referral messages. Refer to [LISP-TE] for usage details
of this LCAF Type.
4.9. Replication List Entries for Multicast Forwarding
The Replication List Entry LCAF Type is an encoding for a locator
being used for unicast replication according to the specification in
[LISP-RE]. This locator encoding is pointed to by a Multicast Info
LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs)
that are participating in an overlay distribution tree. Each RTR
will register its locator address and its configured level in the
distribution tree.
Replication List Entry Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 13 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Rsvd3 | Rsvd4 | Level Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | RTR/ETR #1 ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Rsvd3 | Rsvd4 | Level Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | RTR/ETR #n ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
Rsvd3/Rsvd4: must be set to zero and ignored on receipt.
Level Value: this value is associated with the level within the
overlay distribution tree hierarchy where the RTR resides. The
level numbers are ordered from lowest value being close to the ITR
(meaning that ITRs replicate to level-0 RTRs) and higher levels
are further downstream on the distribution tree closer to ETRs of
multicast receiver sites.
AFI = x: x can be any AFI value from [AFN]. A specific AFI has its
own encoding of either a unicast or multicast locator address.
For efficiency reasons, all RTR/ETR entries for the same level
should be combined by a Map-Server to avoid searching through the
entire multilevel list of locator entries in a Map-Reply message.
Usage: This encoding can be used in RLOC-records in Map-Request, Map-
Reply, Map-Register, and Map-Notify messages.
4.10. Applications for AFI List LCAF Type
4.10.1. Binding IPv4 and IPv6 Addresses
When header translation between IPv4 and IPv6 is desirable, a LISP
Canonical Address can use the AFI List LCAF Type to carry a variable
number of AFIs in one LCAF AFI.
Address Binding LISP Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 1 | IPv4 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv4 Address | AFI = 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv6 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
This type of address format can be included in a Map-Request when the
address is being used as an EID, but the LISP Mapping Database System
lookup destination can use only the IPv4 address. This is so a
Mapping Database Service Transport System, such as LISP-ALT
[RFC6836], can use the Map-Request destination address to route the
control message to the desired LISP site.
Usage: This encoding can be used in EID-records or RLOC-records in
Map-Request, Map-Reply, Map-Register, and Map-Notify messages. See
the other subsections in this section for specific use cases.
4.10.2. Layer 2 VPNs
When Media Access Control (MAC) addresses are stored in the LISP
Mapping Database System, the AFI List LCAF Type can be used to carry
AFI 6.
MAC Address LISP Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 6 | Layer 2 MAC Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... Layer 2 MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
This address format can be used to connect Layer 2 domains together
using LISP over an IPv4 or IPv6 core network to create a Layer 2 VPN.
In this use case, a MAC address is being used as an EID, and the
locator-set that this EID maps to can be an IPv4 or IPv6 RLOC, or
even another MAC address being used as an RLOC. See [EID-MOBILITY]
for how Layer 2 VPNs operate when doing EID mobility.
Care should be taken to protect privacy against the adverse use of a
Layer 2 MAC address by ensuring policy controls are used during EID
registrations that use AFI=6 encodings in RLOC-records. Refer to the
use-case documents for additional information.
4.10.3. ASCII Names in the Mapping Database
If DNS names [RFC1035] or URIs [RFC3986] are stored in the LISP
Mapping Database System, the AFI List LCAF Type can be used to carry
an ASCII string.
ASCII LISP Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 17 | DNS Name or URI ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
An example for using DNS names is when an ETR registers a mapping
with an EID-record encoded as (AFI=1, 10.0.0.0/8) with an RLOC-record
(AFI=17, "router.abc.com").
4.10.4. Using Recursive LISP Canonical Address Encodings
When any combination of above is desirable, the AFI List LCAF Type
value can be used to carry within the LCAF AFI another LCAF AFI (for
example, Application-Specific Data in Section 5.1).
Recursive LISP Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 4 | Rsvd2 | Length2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP TOS, IPv6 TC or Flow Label | Protocol |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Local Port (lower-range) | Local Port (upper-range) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote Port (lower-range) | Remote Port (upper-range) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 1 | IPv4 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv4 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
Length2: length in bytes starting and including the byte after this
Length2 field.
This format could be used by a Mapping Database Service Transport
System, such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is
used as an EID and placed in the Map-Request destination address by
the sending LISP system. The ALT system can deliver the Map-Request
to the LISP destination site independent of the Application Data LCAF
Type AFI payload values. When this AFI is processed by the
destination LISP site, it can return different locator-sets based on
the type of application or level of service that is being requested.
4.10.5. Compatibility Mode Use Case
A LISP system should use the AFI List LCAF Type format when sending
to LISP systems that do not support a particular LCAF Type used to
encode locators. This allows the receiving system to be able to
parse a locator address for encapsulation purposes. The list of AFIs
in an AFI List LCAF Type has no semantic ordering and a receiver
should parse each AFI element no matter what the ordering.
Compatibility Mode Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 5 | Rsvd2 | Length2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|N| Latitude Degrees | Minutes | Seconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|E| Longitude Degrees | Minutes | Seconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Altitude |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 0 | AFI = 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
Length2: length in bytes starting and including the byte after this
Length2 field.
If a system does not recognized the Geo-Coordinates LCAF Type that is
accompanying a locator address, an encoder can include the Geo-
Coordinates LCAF Type embedded in an AFI List LCAF Type where the AFI
in the Geo-Coordinates LCAF Type is set to 0 and the AFI encoded next
in the list is encoded with a valid AFI value to identify the locator
address.
A LISP system is required to support the AFI List LCAF Type to use
this procedure. It would skip over 10 bytes of the Geo-Coordinates
LCAF Type to get to the locator address encoding (an IPv4 locator
address). A LISP system that does support the Geo-Coordinates LCAF
Type can support parsing the locator address within the Geo-
Coordinates LCAF Type encoding or in the locator encoding that
follows in the AFI List LCAF Type.
5. Experimental LISP Canonical Address Applications
The following sections describe experimental LCAF encodings. These
LCAF Types are not approved (i.e., not registered with IANA). The
inclusion of these encodings in this document is in support of
further study and experimentation to determine whether these
encodings are functional, if there is a demand for these use cases,
and to better understand deployment considerations. As noted
previously, these LCAF Types are restricted to cautious use in self-
contained environments in support of the corresponding use-case
documents.
5.1. Convey Application-Specific Data
When a locator-set needs to be conveyed based on the type of
application or the Per-Hop Behavior (PHB) of a packet, the
Application Data LCAF Type can be used.
Application Data LISP Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 4 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP TOS, IPv6 TC, or Flow Label | Protocol |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Local Port (lower-range) | Local Port (upper-range) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote Port (lower-range) | Remote Port (upper-range) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS
field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow
Label used in an IPv6 header.
Local Port/Remote Port Ranges: these fields are from the TCP, UDP,
or Stream Control Transmission Protocol (SCTP) transport header.
A range can be specified by using a lower value and an upper
value. When a single port is encoded, the lower and upper value
fields are the same.
AFI = x: x can be any AFI value from [AFN].
The Application Data LCAF Type is used for an EID encoding when an
ITR wants a locator-set for a specific application. When used for an
RLOC encoding, the ETR is supplying a locator-set for each specific
application is has been configured to advertise.
Usage: This encoding can be used in EID-records in Map-Request, Map-
Reply, Map-Register, and Map-Notify messages. When LISP-DDT
[LISP-DDT] is used as the mapping system mechanism, extended EIDs are
used in Map-Referral messages. This LCAF Type is used as a lookup
key to the mapping system that can return a longest-match or exact-
match entry.
5.2. Generic Database Mapping Lookups
When the LISP Mapping Database System holds information accessed by a
generic formatted key (where the key is not the usual IPv4 or IPv6
address), an opaque key may be desirable.
Opaque Key LISP Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 6 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Field Num | Key Wildcard Fields | Key . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . . . Key |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
Key Field Num: the value of this field is the number of "Key" sub-
fields minus 1, the Key field can be broken up into. So, if this
field has a value of 0, there is one sub-field in the "Key". The
width of the sub-fields are fixed length. So, for a key size of 8
bytes, with a Key Field Num of 3, four sub-fields of 2 bytes each
in length are allowed. Allowing for a reasonable number of 16
sub-field separators, valid values range from 0 to 15.
Key Wildcard Fields: describes which fields in the key are not used
as part of the key lookup. This wildcard encoding is a bitfield.
Each bit is a don't-care bit for a corresponding field in the key.
Bit 0 (the low-order bit) in this bitfield corresponds the first
field, the low-order field in the key, bit 1 the second field, and
so on. When a bit is set in the bitfield, it is a don't-care bit
and should not be considered as part of the database lookup. When
the entire 16 bits are set to 0, then all bits of the key are used
for the database lookup.
Key: the variable length key used to do a LISP Mapping Database
System lookup. The length of the key is the value n (as shown
above).
Usage: This is an experimental Type where the usage has not yet been
defined.
5.3. PETR Admission Control Functionality
When a public Proxy Egress Tunnel Router (PETR) device wants to
verify who is encapsulating to it, it can check for a specific nonce
value in the LISP-encapsulated packet. To convey the nonce to
admitted ITRs or PITRs, this LCAF is used in a Map-Register or Map-
Reply locator-record.
Nonce Locator Canonical Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 8 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
Reserved: must be set to zero and ignored on receipt.
Nonce: a nonce value returned by an ETR in a Map-Reply locator-
record to be used by an ITR or PITR when encapsulating to the
locator address encoded in the AFI field of this LCAF Type. This
nonce value is inserted in the nonce field in the LISP header
encapsulation.
AFI = x: x can be any AFI value from [AFN].
Usage: This is an experimental Type where the usage has not yet been
defined.
5.4. Data Model Encoding
This Type allows a JSON data model to be encoded as either an EID or
an RLOC.
JSON Data Model Type Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 14 | Rsvd2 |B| Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| JSON length | JSON binary/text encoding ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Optional Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
B bit: indicates that the JSON field is binary encoded according to
[JSON-BINARY] when the bit is set to 1. Otherwise, the encoding
is based on text encoding according to [RFC7159].
JSON length: length in octets of the following JSON binary/text
encoding field.
JSON binary/text encoding: a variable-length field that contains
either binary or text encodings.
AFI = x: x can be any AFI value from [AFN]. A specific AFI has its
own encoding of either a unicast or multicast locator address.
All RTR/ETR entries for the same level should be combined by a
Map-Server to avoid searching through the entire multilevel list
of locator entries in a Map-Reply message.
Usage: This is an experimental Type where the usage has not yet been
defined. An example mapping is an EID-record encoded as a
distinguished-name "cpe-router" and an RLOC-record encoded as a JSON
string "{ "router-address" : "1.1.1.1", "router-mask" : "8" }".
5.5. Encoding Key/Value Address Pairs
The Key/Value pair is, for example, useful for attaching attributes
to other elements of LISP packets, such as EIDs or RLOCs. When
attaching attributes to EIDs or RLOCs, it's necessary to distinguish
between the element that should be used as EID or RLOC and, hence, as
the key for lookups and additional attributes. This is especially
the case when the difference cannot be determined from the Types of
the elements, such as when two IP addresses are being used.
Key/Value Address Pair Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 15 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address as Key ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = y | Address as Value ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
AFI = x: x is the "Address as Key" AFI that can have any value from
[AFN]. A specific AFI has its own encoding of either a unicast or
a multicast locator address. All RTR/ETR entries for the same
level should be combined by a Map-Server to avoid searching
through the entire multilevel list of locator entries in a Map-
Reply message.
Address as Key: AFI-encoded address that will be attached with the
attributes encoded in "Address as Value", which follows this
field.
AFI = y: y is the "Address of Value" AFI that can have any value
from [AFN]. A specific AFI has its own encoding of either a
unicast or a multicast locator address. All RTR/ETR entries for
the same level should be combined by a Map-Server to avoid
searching through the entire multilevel list of locator entries in
a Map-Reply message.
Address as Value: AFI-encoded address that will be the attribute
address that goes along with "Address as Key" which precedes this
field.
Usage: This is an experimental Type where the usage has not yet been
defined.
5.6. Multiple Data-Planes
Overlays are becoming popular in many parts of the network, which has
created an explosion of data-plane encapsulation headers. Since the
LISP mapping system can hold many types of address formats, it can
represent the encapsulation format supported by an RLOC as well.
When an encapsulator receives a Map-Reply with an Encapsulation
Format LCAF Type encoded in an RLOC-record, it can select an
encapsulation format, that it can support, from any of the
encapsulation protocols that have the bit set to 1 in this LCAF Type.
Encapsulation Format Address Format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 16 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this
Length field.
Reserved-for-Future-Encapsulations: must be set to zero and ignored
on receipt. This field will get bits allocated to future
encapsulations, as they are created.
U: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept Generic UDP Encapsulation (GUE) using destination UDP
port 6080 [GUE].
G: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept Geneve encapsulation using destination UDP port 6081
[GENEVE].
N: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept NV-GRE (Network Virtualization - Generic Routing
Encapsulation) using IPv4/IPv6 protocol number 47 [RFC7637].
v: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept VXLAN-GPE (Generic Protocol Extension) encapsulation
using destination UDP port 4790 [GPE-VXLAN].
V: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept Virtual eXtensible Local Area Network (VXLAN)
encapsulation using destination UDP port 4789 [RFC7348].
l: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept Layer 2 LISP encapsulation using destination UDP port
8472 [LISP-L2].
L: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept Layer 3 LISP encapsulation using destination UDP port
4341 [RFC6830].
Usage: This encoding can be used in RLOC-records in Map-Request, Map-
Reply, Map-Register, and Map-Notify messages.
6. Security Considerations
This document is classified as Experimental. The LCAF encodings
defined in this document are intended to be used with their
corresponding use cases and in self-contained environments. Users
should carefully consider how the [LISP-SEC] threat model applies to
their particular use case.
The use of the Geo-Coordinates LCAF Type may raise physical privacy
issues. Care should be taken when configuring the mapping system to
use specific policy parameters so geolocation information is not
returned gratuitously. It is recommended that any documents that
specify the use of the Geo-Coordinates LCAF Type should consider the
applicability of RFC 6280 (BCP 160) [RFC6280] for location-based
privacy protection.
Additional privacy concerns have arisen since publication of BCP 160,
and future work on LISP should examine potential threats beyond BCP
160 and address improving privacy and security for LISP deployments.
7. IANA Considerations
This document defines a canonical address format encoding used in
LISP control messages and in the encoding of lookup keys for the LISP
Mapping Database System. Such an address format is based on a fixed
AFI (16387) and a LISP LCAF Type field.
The LISP LCAF Type field is an 8-bit field specific to the LISP
Canonical Address Format encodings. IANA has created a new registry
(as outlined in [RFC5226]) titled "LISP Canonical Address Format
(LCAF) Types". Initial values for the "LISP Canonical Address Format
(LCAF) Types" registry are given below. Future assignments are to be
made using the Specification Required policy [RFC5226]. Assignments
consist of a LISP LCAF Type Name and its associated value:
+-------+------------------------+-----------+
| Value | LISP LCAF Type Name | Reference |
+-------+------------------------+-----------+
| 0 | Null Body | Section 3 |
| 1 | AFI List | Section 3 |
| 2 | Instance ID | Section 3 |
| 3 | AS Number | Section 3 |
| 5 | Geo-Coordinates | Section 3 |
| 7 | NAT-Traversal | Section 3 |
| 9 | Multicast Info | Section 3 |
| 10 | Explicit Locator Path | Section 3 |
| 11 | Security Key | Section 3 |
| 12 | Source/Dest Key | Section 3 |
| 13 | Replication List Entry | Section 3 |
+-------+------------------------+-----------+
Table 1: Initial Values in the
"LISP Canonical Address Format (LCAF) Types" Registry
8. References
8.1. Normative References
[RFC1035] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
November 1987, <http://www.rfc-editor.org/info/rfc1035>.
[RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
and E. Lear, "Address Allocation for Private Internets",
BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
<http://www.rfc-editor.org/info/rfc1918>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC3232] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced
by an On-line Database", RFC 3232, DOI 10.17487/RFC3232,
January 2002, <http://www.rfc-editor.org/info/rfc3232>.
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, DOI 10.17487/RFC3986, January 2005,
<http://www.rfc-editor.org/info/rfc3986>.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
DOI 10.17487/RFC5226, May 2008,
<http://www.rfc-editor.org/info/rfc5226>.
[RFC6280] Barnes, R., Lepinski, M., Cooper, A., Morris, J.,
Tschofenig, H., and H. Schulzrinne, "An Architecture for
Location and Location Privacy in Internet Applications",
BCP 160, RFC 6280, DOI 10.17487/RFC6280, July 2011,
<http://www.rfc-editor.org/info/rfc6280>.
[RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The
Locator/ID Separation Protocol (LISP)", RFC 6830,
DOI 10.17487/RFC6830, January 2013,
<http://www.rfc-editor.org/info/rfc6830>.
[RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis,
"Locator/ID Separation Protocol Alternative Logical
Topology (LISP+ALT)", RFC 6836, DOI 10.17487/RFC6836,
January 2013, <http://www.rfc-editor.org/info/rfc6836>.
[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
2014, <http://www.rfc-editor.org/info/rfc7159>.
[RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
eXtensible Local Area Network (VXLAN): A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3
Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
<http://www.rfc-editor.org/info/rfc7348>.
[RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network
Virtualization Using Generic Routing Encapsulation",
RFC 7637, DOI 10.17487/RFC7637, September 2015,
<http://www.rfc-editor.org/info/rfc7637>.
8.2. Informative References
[AFN] IANA, "Address Family Numbers",
<http://www.iana.org/assignments/address-family-numbers/>.
[EID-MOBILITY]
Portoles-Comeras, M., Ashtaputre, V., Moreno, V., Maino,
F., and D. Farinacci, "LISP L2/L3 EID Mobility Using a
Unified Control Plane", Work in Progress,
draft-portoles-lisp-eid-mobility-01, October 2016.
[GENEVE] Gross, J., Ganga, I., and T. Sridhar, "Geneve: Generic
Network Virtualization Encapsulation", Work in Progress,
draft-ietf-nvo3-geneve-03, September 2016.
[GPE-VXLAN]
Maino, F., Kreeger, L., and U. Elzur, "Generic Protocol
Extension for VXLAN", Work in Progress,
draft-ietf-nvo3-vxlan-gpe-03, October 2016.
[GUE] Herbert, T., Yong, L., and O. Zia, "Generic UDP
Encapsulation", Work in Progress, draft-ietf-nvo3-gue-05,
October 2016.
[JSON-BINARY]
"Universal Binary JSON Specification",
<http://ubjson.org>.
[LISP-DDT] Fuller, V., Lewis, D., Ermagan, V., Jain, A., and A.
Smirnov, "LISP Delegated Database Tree", Work in
Progress, draft-ietf-lisp-ddt-09, January 2017.
[LISP-L2] Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2
(L2) LISP Encapsulation Format", Work in Progress,
draft-smith-lisp-layer2-03, September 2013.
[LISP-RE] Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J.,
Maino, F., and D. Farinacci, "LISP Replication
Engineering", Work in Progress,
draft-coras-lisp-re-08, November 2015.
[LISP-SEC] Maino, F., Ermagan, V., Cabellos, A., and D. Saucez,
"LISP-Security (LISP-SEC)", Work in Progress,
draft-ietf-lisp-sec-12, November 2016.
[LISP-TE] Farinacci, D., Kowal, M., and P. Lahiri, "LISP Traffic
Engineering Use-Cases", Work in Progress,
draft-farinacci-lisp-te-11, September 2016.
[NAT-LISP] Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino,
F., and C. White, "NAT traversal for LISP", Work in
Progress, draft-ermagan-lisp-nat-traversal-11, August
2016.
[RFC8061] Farinacci, D. and B. Weis, "Locator/ID Separation Protocol
(LISP) Data-Plane Confidentiality", RFC 8061,
DOI 10.17487/RFC8061, February 2017,
<http://www.rfc-editor.org/info/rfc8061>.
[WGS-84] National Imagery and Mapping Agency, "Department of
Defense World Geodetic System 1984", NIMA TR8350.2,
January 2000, <http://earth-info.nga.mil/GandG/
publications/tr8350.2/wgs84fin.pdf>.
Acknowledgments
The authors would like to thank Vince Fuller, Gregg Schudel, Jesper
Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for
their technical and editorial commentary.
The authors would like to thank Victor Moreno for discussions that
led to the definition of the Multicast Info LCAF Type.
The authors would like to thank Parantap Lahiri and Michael Kowal for
discussions that led to the definition of the Explicit Locator Path
(ELP) LCAF Type.
The authors would like to thank Fabio Maino and Vina Ermagan for
discussions that led to the definition of the Security Key LCAF Type.
The authors would like to thank Albert Cabellos-Aparicio and Florin
Coras for discussions that led to the definition of the Replication
List Entry LCAF Type.
Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for
suggesting new LCAF Types.
Thanks also goes to Terry Manderson for assistance obtaining a LISP
AFI value from IANA.
And finally, the authors thank Stephen Farrell (Security Area
Director) and Deborah Brungard (Routing Area Director) for their
suggested text to get the document through IESG review.
Authors' Addresses
Dino Farinacci
lispers.net
San Jose, CA
United States of America
Email: farinacci@gmail.com
Dave Meyer
Brocade
San Jose, CA
United States of America
Email: dmm@1-4-5.net
Job Snijders
NTT Communications
Theodorus Majofskistraat 100
Amsterdam 1065 SZ
The Netherlands
Email: job@ntt.net