Rfc5817
TitleGraceful Shutdown in MPLS and Generalized MPLS Traffic Engineering Networks
AuthorZ. Ali, JP. Vasseur, A. Zamfir, J. Newton
DateApril 2010
Format:TXT, HTML
Status:INFORMATIONAL






Internet Engineering Task Force (IETF)                            Z. Ali
Request for Comments: 5817                                   JP. Vasseur
Category: Informational                                        A. Zamfir
ISSN: 2070-1721                                      Cisco Systems, Inc.
                                                               J. Newton
                                                      Cable and Wireless
                                                              April 2010


             Graceful Shutdown in MPLS and Generalized MPLS
                      Traffic Engineering Networks

Abstract

   MPLS-TE Graceful Shutdown is a method for explicitly notifying the
   nodes in a Traffic Engineering (TE) enabled network that the TE
   capability on a link or on an entire Label Switching Router (LSR) is
   going to be disabled.  MPLS-TE graceful shutdown mechanisms are
   tailored toward addressing planned outage in the network.

   This document provides requirements and protocol mechanisms to reduce
   or eliminate traffic disruption in the event of a planned shutdown of
   a network resource.  These operations are equally applicable to both
   MPLS-TE and its Generalized MPLS (GMPLS) extensions.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc5817.











RFC 5817                 MPLS Graceful Shutdown               April 2010


Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

Table of Contents

   1. Introduction ....................................................3
   2. Terminology .....................................................3
   3. Requirements for Graceful Shutdown ..............................4
   4. Mechanisms for Graceful Shutdown ................................5
      4.1. OSPF / IS-IS Mechanisms for Graceful Shutdown ..............5
      4.2. RSVP-TE Signaling Mechanisms for Graceful Shutdown .........6
   5. Manageability Considerations ....................................8
   6. Security Considerations .........................................8
   7. Acknowledgments .................................................8
   8. References ......................................................9
      8.1. Normative References .......................................9
      8.2. Informative References .....................................9










RFC 5817                 MPLS Graceful Shutdown               April 2010


1.  Introduction

   When outages in a network are planned (e.g., for maintenance
   purposes), some mechanisms can be used to avoid traffic disruption.
   This is in contrast with unplanned network element failure, where
   traffic disruption can be minimized thanks to recovery mechanisms,
   but may not be avoided.  Therefore, a Service Provider may desire to
   gracefully (temporarily or indefinitely) remove a TE link, a group of
   TE links, or an entire node for administrative reasons such as link
   maintenance, software/hardware upgrade at a node, or significant TE
   configuration changes.  In all these cases, the goal is to minimize
   the impact on the traffic carried over TE LSPs in the network by
   triggering notifications so as to gracefully reroute such flows
   before the administrative procedures are started.

   These operations are equally applicable to both MPLS-TE [RFC3209] and
   its Generalized MPLS (GMPLS) extensions [RFC3471] [RFC3473].

   This document describes the mechanisms that can be used to gracefully
   shut down MPLS-TE / GMPLS-TE on a resource such as a TE link, a
   component link within a bundled TE link, a label resource, or an
   entire TE node.

   Graceful shutdown of a resource may require several steps.  These
   steps can be broadly divided into two sets: disabling the resource in
   the control plane and disabling the resource in the data plane.  The
   node initiating the graceful shutdown condition introduces a delay
   between the two sets to allow the control plane to gracefully divert
   the traffic away from the resource being gracefully shut down.  The
   trigger for the graceful shutdown event is a local matter at the node
   initiating the graceful shutdown.  Typically, graceful shutdown is
   triggered for administrative reasons, such as link maintenance or
   software/hardware upgrade.

2.  Terminology

   LSR: Label Switching Router.  The terms node and LSR are used
      interchangeably in this document.

   GMPLS: The term GMPLS is used in this document to refer to packet
      MPLS-TE, as well as GMPLS extensions to MPLS-TE.

   TE Link: The term TE link refers to a single link or a bundle of
      physical links or FA-LSPs (see below) on which traffic engineering
      is enabled.

   TE LSP: A Traffic Engineered Label Switched Path.




RFC 5817                 MPLS Graceful Shutdown               April 2010


   S-LSP: A segment of a TE LSP.

   FA-LSP (Forwarding Adjacency LSP): An LSP that is announced as a TE
      link into the same instance of the GMPLS control plane as the one
      that was used to create the LSP [RFC4206].

   ISIS-LSP: Link State Packet that is generated by IS-IS routers and
      that contains routing information.

   LSA: Link State Advertisement that is generated by OSPF routers and
      that contains routing information.

   TE LSA / TE-IS-IS-LSP: The traffic engineering extensions to OSPF /
      IS-IS.

   Head-end node: Ingress LSR that initiated signaling for the Path.

   Border node: Ingress LSR of a TE LSP segment (S-LSP).

   PCE (Path Computation Element): An entity that computes the routes on
      behalf of its clients (PCC) [RFC4655].

   Last-resort resource: If a path to a destination from a given head-
      end node cannot be found upon removal of a resource (e.g., TE
      link, TE node), the resource is called "last resort" to reach that
      destination from the given head-end node.

3.  Requirements for Graceful Shutdown

   This section lists the requirements for graceful shutdown in the
   context of GMPLS.

   - Graceful shutdown is required to address graceful removal of one TE
     link, one component link within a bundled TE link, a set of TE
     links, a set of component links, label resources, or an entire
     node.

   - Once an operator has initiated graceful shutdown of a network
     resource, no new TE LSPs may be set up that use the resource.  Any
     signaling message for a new TE LSP that explicitly specifies the
     resource, or that would require the use of the resource due to
     local constraints, is required to be rejected as if the resource
     were unavailable.

   - It is desirable for new TE LSP set-up attempts that would be
     rejected because of graceful shutdown of a resource (as described
     in the previous requirement) to avoid any attempt to use the
     resource by selecting an alternate route or other resources.



RFC 5817                 MPLS Graceful Shutdown               April 2010


   - If the resource being shut down is a last-resort resource, based on
     a local decision, the node initiating the graceful shutdown
     procedure can cancel the shutdown operation.

   - It is required to give the ingress node the opportunity to take
     actions in order to reduce or eliminate traffic disruption on the
     TE LSPs that are using the network resources that are about to be
     shut down.

   - Graceful shutdown mechanisms are equally applicable to intra-domain
     TE LSPs and those spanning multiple domains, as defined in
     [RFC4726].  Examples of such domains include IGP areas and
     Autonomous Systems.

   - Graceful shutdown is equally applicable to packet and non-packet
     networks.

   - In order to make rerouting effective, it is required that when a
     node initiates the graceful shutdown of a resource, it notifies all
     other network nodes about the TE resource under graceful shutdown.

   - Depending on switching technology, it may be possible to shut down
     a label resource, e.g., shutting down a lambda in a Lambda Switch
     Capable (LSC) node.

4.  Mechanisms for Graceful Shutdown

   An IGP-only solution based on [RFC3630], [RFC5305], [RFC4203] and
   [RFC5307] is not applicable when dealing with inter-area and inter-AS
   traffic engineering, as IGP flooding is restricted to IGP
   areas/levels.  An RSVP-based solution is proposed in this document to
   handle TE LSPs spanning multiple domains.  In addition, in order to
   discourage nodes from establishing new TE LSPs through the resources
   being shut down, existing IGP mechanisms are used for the shutdown
   notification.

   A node where a link or the whole node is being shut down first
   triggers the IGP updates as described in Section 4.1 and then, with
   some delay to allow network convergence, uses the signaling mechanism
   described in Section 4.2.

4.1.  OSPF / IS-IS Mechanisms for Graceful Shutdown

   This section describes the use of existing OSPF and IS-IS mechanisms
   for the graceful shutdown in GMPLS networks.






RFC 5817                 MPLS Graceful Shutdown               April 2010


   The OSPF and IS-IS procedures for graceful shutdown of TE links are
   similar to the graceful restart of OSPF and IS-IS as described in
   [RFC4203] and [RFC5307], respectively.  Specifically, the node where
   graceful shutdown of a link is desired originates the TE LSA or IS-
   IS-LSP containing a Link TLV for the link under graceful shutdown
   with the Traffic Engineering metric set to 0xffffffff, 0 as
   unreserved bandwidth.  If the TE link has LSC or FSC as its Switching
   Capability, then it also has 0 in the "Max LSP Bandwidth" field of
   the Interface Switching Capability Descriptor (ISCD) sub-TLV.  A node
   may also specify a value that is greater than the available bandwidth
   in the "Minimum LSP bandwidth" field of the same ISCD sub-TLV.  This
   would discourage new TE LSP establishment through the link under
   graceful shutdown.

   If the graceful shutdown procedure is performed for a component link
   within a TE link bundle and it is not the last component link
   available within the TE link, the link attributes associated with the
   TE link are recomputed.  Similarly, if the graceful shutdown
   procedure is performed on a label resource within a TE link, the link
   attributes associated with the TE link are recomputed.  If the
   removal of the component link or label resource results in a
   significant bandwidth change event, a new LSA is originated with the
   new traffic parameters.  If the last component link is being shut
   down, the routing procedure related to TE link removal is used.

   Neighbors of the node where graceful shutdown procedure is in
   progress continue to advertise the actual unreserved bandwidth of the
   TE links from the neighbors to that node, without any routing
   adjacency change.

   When graceful shutdown at node level is desired, the node in question
   follows the procedure specified in the previous section for all TE
   links.

4.2 RSVP-TE Signaling Mechanisms for Graceful Shutdown

   As discussed in Section 3, one of the requirements for the signaling
   mechanism for graceful shutdown is to carry information about the
   resource under graceful shutdown.  For this purpose, the graceful
   shutdown procedure uses TE LSP rerouting mechanism as defined in
   [RFC5710].

   Specifically, the node where graceful shutdown of an unbundled TE
   link or an entire bundled TE link is desired triggers a PathErr
   message with the error code "Notify" and error value "Local link
   maintenance required", for all affected TE LSPs.  Similarly, the node
   that is being gracefully shut down triggers a PathErr message with
   the error code "Notify" and error value "Local node maintenance



RFC 5817                 MPLS Graceful Shutdown               April 2010


   required", for all TE LSPs.  For graceful shutdown of a node, an
   unbundled TE link, or an entire bundled TE link, the PathErr message
   may contain either an [RFC2205] format ERROR_SPEC object or an IF_ID
   [RFC3473] format ERROR_SPEC object.  In either case, it is the
   address and TLVs carried by the ERROR_SPEC object and not the error
   value that indicate the resource that is to be gracefully shut down.

   MPLS-TE link bundling [RFC4201] requires that an TE LSP is pinned
   down to a component link.  Consequently, graceful shutdown of a
   component link in a bundled TE link differs from graceful shutdown of
   unbundled TE link or entire bundled TE link.  Specifically, in the
   former case, when only a subset of component links and not the entire
   bundled TE link is being shut down, the remaining component links of
   the bundled TE link may still be able to admit new TE LSPs.  The node
   where graceful shutdown of a component link is desired triggers a
   PathErr message with the error code "Notify" and error value of
   "Local link maintenance required".  The rest of the ERROR_SPEC object
   is constructed using Component Reroute Request procedure defined in
   [RFC5710].

   If graceful shutdown of a label resource is desired, the node
   initiating this action triggers a PathErr message with the error
   codes and error values of "Notify/Local link maintenance required".
   The rest of the ERROR_SPEC object is constructed using the Label
   Reroute Request procedure defined in [RFC5710].

   When a head-end node, a transit node, or a border node receives a
   PathErr message with the error code "Notify" and error value "Local
   link maintenance required" or "Local node maintenance required", it
   follows the procedures defined in [RFC5710] to reroute the traffic
   around the resource being gracefully shut down.  When performing path
   computation for the new TE LSP, the head-end node or border node
   avoids using the TE resources identified by the ERROR_SPEC object.
   If the PCE is used for path computation, the head-end (or border)
   node acting as PCC specifies in its requests to the PCE that path
   computation should avoid the resource being gracefully shut down.
   The amount of time the head-end node or border node avoids using the
   TE resources identified by the IP address contained in the PathErr is
   based on a local decision at that node.

   If the node initiating the graceful shutdown procedure receives a
   path setup request for a new tunnel-using resource being gracefully
   shut down, it sends a PathErr message with "Notify" error code in the
   ERROR SPEC object and an error value consistent with the type of
   resource being gracefully shut down.  However, based on a local
   decision, if an existing tunnel continues to use the resource being
   gracefully shut down, the node initiating the graceful shutdown
   procedure may allow that resource being gracefully shut down to be



RFC 5817                 MPLS Graceful Shutdown               April 2010


   used as a "last resort".  The node initiating the graceful shutdown
   procedure can distinguish between new and existing tunnels by
   inspecting the SENDER TEMPLATE and SESSION objects.

   If the resource being shut down is a last-resort resource, it can be
   used; i.e., based on a local decision, the node initiating the
   graceful shutdown procedure can cancel the shutdown operation.
   Similarly, based on a local decision, the node initiating the
   graceful shutdown procedure can delay the actual removal of resource
   for forwarding.  This is to give time to the network to move traffic
   from the resource being shut down.  For this purpose, the node
   initiating graceful shutdown procedure follows the Reroute Request
   Timeout procedure defined in [RFC5710].

5.  Manageability Considerations

   When a TE link is being shut down, a linkDown trap as defined in
   [RFC2863] should be generated for the TE link.  Similarly, if a
   bundled TE link is being shut down, a linkDown trap as defined in
   [RFC2863] should be generated for the bundled TE link, as well as for
   each of its component links.  If a TE node is being shut down, a
   linkDown trap as defined in [RFC2863] should be generated for all TE
   links at the node.

6.  Security Considerations

   This document introduces no new security considerations as it
   describes usage of existing formats and mechanisms.  This document
   relies on existing procedures for advertisement of TE LSA / IS-IS-
   LSPs containing Link TLVs.  Tampering with TE LSAs / IS-IS-LSPs may
   have an effect on traffic engineering computations, and it is
   suggested that any mechanisms used for securing the transmission of
   normal LSAs / IS-IS-LSPs be applied equally to all Opaque LSAs / IS-
   IS-LSPs that this document uses.  Existing security considerations
   specified in [RFC3630], [RFC5305], [RFC4203], [RFC5307], and
   [MPLS-GMPLS-SEC] remain relevant and suffice.  Furthermore, the
   Security Considerations section in [RFC5710] and section 9 of
   [RFC4736] should be used for understanding the security
   considerations related to the formats and mechanisms used in this
   document.

7.  Acknowledgments

   The authors would like to thank Adrian Farrel for his detailed
   comments and suggestions.  The authors would also like to acknowledge
   useful comments from David Ward, Sami Boutros, and Dimitri
   Papadimitriou.




RFC 5817                 MPLS Graceful Shutdown               April 2010


8.  References

8.1.  Normative References

   [RFC2205]        Braden, R., Ed., Zhang, L., Berson, S., Herzog, S.,
                    and S. Jamin, "Resource ReSerVation Protocol (RSVP)
                    -- Version 1 Functional Specification", RFC 2205,
                    September 1997.

   [RFC5710]        Berger, L., Papadimitriou, D., and JP. Vasseur,
                    "PathErr Message Triggered MPLS and GMPLS LSP
                    Reroutes", RFC 5710, January 2010.

8.2.  Informative References

   [RFC3209]        Awduche, D., Berger, L., Gan, D., Li, T.,
                    Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions
                    to RSVP for LSP Tunnels", RFC 3209, December 2001.

   [RFC4736]        Vasseur, JP., Ed., Ikejiri, Y., and R. Zhang,
                    "Reoptimization of Multiprotocol Label Switching
                    (MPLS) Traffic Engineering (TE) Loosely Routed Label
                    Switched Path (LSP)", RFC 4736, November 2006.

   [RFC3630]        Katz, D., Kompella, K., and D. Yeung, "Traffic
                    Engineering (TE) Extensions to OSPF Version 2", RFC
                    3630, September 2003.

   [RFC5305]        Li, T. and H. Smit, "IS-IS Extensions for Traffic
                    Engineering", RFC 5305, October 2008.

   [RFC4203]        Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF
                    Extensions in Support of Generalized Multi-Protocol
                    Label Switching (GMPLS)", RFC 4203, October 2005.

   [RFC5307]        Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS
                    Extensions in Support of Generalized Multi-Protocol
                    Label Switching (GMPLS)", RFC 5307, October 2008.

   [RFC3471]        Berger, L., Ed., "Generalized Multi-Protocol Label
                    Switching (GMPLS) Signaling Functional Description",
                    RFC 3471, January 2003.

   [RFC3473]        Berger, L., Ed., "Generalized Multi-Protocol Label
                    Switching (GMPLS) Signaling Resource ReserVation
                    Protocol-Traffic Engineering (RSVP-TE) Extensions",
                    RFC 3473, January 2003.




RFC 5817                 MPLS Graceful Shutdown               April 2010


   [RFC4726]        Farrel, A., Vasseur, J.-P., and A. Ayyangar, "A
                    Framework for Inter-Domain Multiprotocol Label
                    Switching Traffic Engineering", RFC 4726, November
                    2006.

   [RFC4201]        Kompella, K., Rekhter, Y., and L. Berger, "Link
                    Bundling in MPLS Traffic Engineering (TE)", RFC
                    4201, October 2005.

   [RFC4206]        Kompella, K. and Y. Rekhter, "Label Switched Paths
                    (LSP) Hierarchy with Generalized Multi-Protocol
                    Label Switching (GMPLS) Traffic Engineering (TE)",
                    RFC 4206, October 2005.

   [RFC4655]        Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
                    Computation Element (PCE)-Based Architecture", RFC
                    4655, August 2006.

   [RFC2863]        McCloghrie, K. and F. Kastenholz, "The Interfaces
                    Group MIB", RFC 2863, June 2000.

   [MPLS-GMPLS-SEC] Luyuan F., Ed., "Security Framework for PLS and
                    GMPLS Networks", Work in Progress, March 2010.




























RFC 5817                 MPLS Graceful Shutdown               April 2010


Authors' Addresses

   Zafar Ali
   Cisco systems, Inc.,
   2000 Innovation Drive
   Kanata, Ontario, K2K 3E8
   Canada
   EMail: zali@cisco.com

   Jean Philippe Vasseur
   Cisco Systems, Inc.
   300 Beaver Brook Road
   Boxborough, MA  01719
   USA
   EMail: jpv@cisco.com

   Anca Zamfir
   Cisco Systems, Inc.
   2000 Innovation Drive
   Kanata, Ontario, K2K 3E8
   Canada
   EMail: ancaz@cisco.com

   Jonathan Newton
   Cable and Wireless
   EMail: jonathan.newton@cw.com