Stream: Internet Engineering Task Force (IETF)

RFC: 9421

Category: Standards Track

Published: February 2024

ISSN: 2070-1721

Authors: A.Backman, Ed. J.Richer, Ed. M. Sporny
Amazon Bespoke Engineering Digital Bazaar

RFC 9421
HTTP Message Signatures

Abstract

This document describes a mechanism for creating, encoding, and verifying digital signatures or
message authentication codes over components of an HTTP message. This mechanism supports
use cases where the full HTTP message may not be known to the signer and where the message
may be transformed (e.g., by intermediaries) before reaching the verifier. This document also
describes a means for requesting that a signature be applied to a subsequent HTTP message in an
ongoing HTTP exchange.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9421.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Backman, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9421
https://www.rfc-editor.org/info/rfc9421
https://trustee.ietf.org/license-info

RFC 9421 HTTP Message Signatures February 2024

Table of Contents

1. Introduction 6
1.1. Conventions and Terminology 7
1.2. Requirements 9
1.3. HTTP Message Transformations 10
1.4. Application of HTTP Message Signatures 11

2. HTTP Message Components 12
2.1. HTTP Fields 13

2.1.1. Strict Serialization of HTTP Structured Fields 16
2.1.2. Dictionary Structured Field Members 17
2.1.3. Binary-Wrapped HTTP Fields 18
2.1.4. Trailer Fields 19
2.2. Derived Components 20
2.2.1. Method 21
2.2.2. Target URI 21
2.2.3. Authority 22
2.2.4. Scheme 22
2.2.5. Request Target 23
2.2.6. Path 25
2.2.7. Query 25
2.2.8. Query Parameters 26
2.2.9. Status Code 28
2.3. Signature Parameters 29
2.4. Signing Request Components in a Response Message 30
2.5. Creating the Signature Base 35

3. HTTP Message Signatures 38
3.1. Creating a Signature 38
3.2. Verifying a Signature 40

3.2.1. Enforcing Application Requirements 42

Backman, et al. Standards Track Page 2

RFC 9421 HTTP Message Signatures February 2024

3.3. Signature Algorithms 42
3.3.1. RSASSA-PSS Using SHA-512 43
3.3.2. RSASSA-PKCS1-v1_5 Using SHA-256 44
3.3.3. HMAC Using SHA-256 44
3.3.4. ECDSA Using Curve P-256 DSS and SHA-256 44
3.3.5. ECDSA Using Curve P-384 DSS and SHA-384 45
3.3.6. EADSA Using Curve edwards25519 46
3.3.7. JSON Web Signature (JWS) Algorithms 46

4. Including a Message Signature in a Message 46

4.1. The Signature-Input HTTP Field 47

4.2. The Signature HTTP Field 47

4.3. Multiple Signatures 48

5. Requesting Signatures 51
5.1. The Accept-Signature Field 51
5.2. Processing an Accept-Signature 52

6. IANA Considerations 53

6.1. HTTP Field Name Registration 53

6.2. HTTP Signature Algorithms Registry 53
6.2.1. Registration Template 55
6.2.2. Initial Contents 35

6.3. HTTP Signature Metadata Parameters Registry 56
6.3.1. Registration Template 56
6.3.2. Initial Contents 57

6.4. HTTP Signature Derived Component Names Registry 57
6.4.1. Registration Template 58
6.4.2. Initial Contents 58

6.5. HTTP Signature Component Parameters Registry 59
6.5.1. Registration Template 60
6.5.2. Initial Contents 60

Backman, et al. Standards Track Page 3

RFC 9421 HTTP Message Signatures February 2024

7. Security Considerations 61
7.1. General Considerations 61
7.1.1. Skipping Signature Verification 61
7.1.2. Use of TLS 61
7.2. Message Processing and Selection 62
7.2.1. Insufficient Coverage 62
7.2.2. Signature Replay 62
7.2.3. Choosing Message Components 62
7.2.4. Choosing Signature Parameters and Derived Components over HTTP Fields 63
7.2.5. Signature Labels 63
7.2.6. Multiple Signature Confusion 64
7.2.7. Collision of Application-Specific Signature Tag 64
7.2.8. Message Content 64
7.3. Cryptographic Considerations 66
7.3.1. Cryptography and Signature Collision 66
7.3.2. Key Theft 66
7.3.3. Symmetric Cryptography 66
7.3.4. Key Specification Mixup 67
7.3.5. Non-deterministic Signature Primitives 67
7.3.6. Key and Algorithm Specification Downgrades 67
7.3.7. Signing Signature Values 68
7.4. Matching Signature Parameters to the Target Message 69
7.4.1. Modification of Required Message Parameters 69
7.4.2. Matching Values of Covered Components to Values in the Target Message 69
7.4.3. Message Component Source and Context 69
7.4.4. Multiple Message Component Contexts 70
7.5. HTTP Processing 71
7.5.1. Processing Invalid HTTP Field Names as Derived Component Names 71
7.5.2. Semantically Equivalent Field Values 71
7.5.3. Parsing Structured Field Values 72

Backman, et al. Standards Track Page 4

RFC 9421 HTTP Message Signatures February 2024

7.5.4. HTTP Versions and Component Ambiguity 72
7.5.5. Canonicalization Attacks 72
7.5.6. Non-List Field Values 73
7.5.7. Padding Attacks with Multiple Field Values 74
7.5.8. Ambiguous Handling of Query Elements 74

8. Privacy Considerations 75
8.1. Identification through Keys 75
8.2. Signatures do not provide confidentiality 75
8.3. Oracles 75
8.4. Required Content 75

9. References 76
9.1. Normative References 76
9.2. Informative References 77
Appendix A. Detecting HTTP Message Signatures 78
Appendix B. Examples 79
B.1. Example Keys 79
B.1.1. Example RSA Key 79
B.1.2. Example RSA-PSS Key 81
B.1.3. Example ECC P-256 Test Key 83
B.1.4. Example Ed25519 Test Key 84
B.1.5. Example Shared Secret 84

B.2. Test Cases 84
B.2.1. Minimal Signature Using rsa-pss-sha512 85
B.2.2. Selective Covered Components Using rsa-pss-sha512 86
B.2.3. Full Coverage Using rsa-pss-sha512 87
B.2.4. Signing a Response Using ecdsa-p256-sha256 88
B.2.5. Signing a Request Using hmac-sha256 89
B.2.6. Signing a Request Using ed25519 89

B.3. TLS-Terminating Proxies 90
B.4. HTTP Message Transformations 92

Backman, et al. Standards Track Page 5

RFC 9421 HTTP Message Signatures February 2024

Acknowledgements 95

Authors' Addresses 95

1. Introduction

Message integrity and authenticity are security properties that are critical to the secure
operation of many HTTP applications. Application developers typically rely on the transport
layer to provide these properties, by operating their application over TLS [TLS]. However, TLS
only guarantees these properties over a single TLS connection, and the path between the client
and application may be composed of multiple independent TLS connections (for example, if the
application is hosted behind a TLS-terminating gateway or if the client is behind a TLS Inspection
appliance). In such cases, TLS cannot guarantee end-to-end message integrity or authenticity
between the client and application. Additionally, some operating environments present obstacles
that make it impractical to use TLS (such as the presentation of client certificates from a browser)
or to use features necessary to provide message authenticity. Furthermore, some applications
require the binding of a higher-level application-specific key to the HTTP message, separate from
any TLS certificates in use. Consequently, while TLS can meet message integrity and authenticity
needs for many HTTP-based applications, it is not a universal solution.

Additionally, many applications need to be able to generate and verify signatures despite
incomplete knowledge of the HTTP message as seen on the wire, due to the use of libraries,
proxies, or application frameworks that alter or hide portions of the message from the
application at the time of signing or verification. These applications need a means to protect the
parts of the message that are most relevant to the application without having to violate layering
and abstraction.

Finally, object-based signature mechanisms such as JSON Web Signature [JWS] require the intact
conveyance of the exact information that was signed. When applying such technologies to an
HTTP message, elements of the HTTP message need to be duplicated in the object payload either
directly or through the inclusion of a hash. This practice introduces complexity, since the
repeated information needs to be carefully checked for consistency when the signature is
verified.

This document defines a mechanism for providing end-to-end integrity and authenticity for
components of an HTTP message by using a detached signature on HTTP messages. The
mechanism allows applications to create digital signatures or message authentication codes
(MACs) over only the components of the message that are meaningful and appropriate for the
application. Strict canonicalization rules ensure that the verifier can verify the signature even if
the message has been transformed in many of the ways permitted by HTTP.

The signing mechanism described in this document consists of three parts:

* A common nomenclature and canonicalization rule set for the different protocol elements
and other components of HTTP messages, used to create the signature base (Section 2).

Backman, et al. Standards Track Page 6

RFC 9421 HTTP Message Signatures February 2024

* Algorithms for generating and verifying signatures over HTTP message components using
this signature base through the application of cryptographic primitives (Section 3).

* A mechanism for attaching a signature and related metadata to an HTTP message and for
parsing attached signatures and metadata from HTTP messages. To facilitate this, this
document defines the "Signature-Input” and "Signature" fields (Section 4).

This document also provides a mechanism for negotiating the use of signatures in one or more
subsequent messages via the "Accept-Signature" field (Section 5). This optional negotiation
mechanism can be used along with opportunistic or application-driven message signatures by
either party.

The mechanisms defined in this document are important tools that can be used to build an
overall security mechanism for an application. This toolkit provides some powerful capabilities
but is not sufficient in creating an overall security story. In particular, the requirements listed in
Section 1.4 and the security considerations discussed in Section 7 are of high importance to all
implementors of this specification. For example, this specification does not define a means to
directly cover HTTP message content (defined in Section 6.4 of [HTTP]); rather, it relies on the
Digest specification [DIGEST] to provide a hash of the message content, as discussed in Section
7.2.8.

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

The terms "HTTP message", "HTTP request”, "HTTP response", "target URI", "gateway", "header

field", "intermediary", "request target”, "trailer field", "sender", "method", and "recipient" are
used as defined in [HTTP].

For brevity, the term "signature" on its own is used in this document to refer to both digital
signatures (which use asymmetric cryptography) and keyed MACs (which use symmetric
cryptography). Similarly, the verb "sign" refers to the generation of either a digital signature or
keyed MAC over a given signature base. The qualified term "digital signature" refers specifically
to the output of an asymmetric cryptographic signing operation.

This document uses the following terminology from Section 3 of [STRUCTURED-FIELDS] to
specify data types: List, Inner List, Dictionary, Item, String, Integer, Byte Sequence, and Boolean.

This document defines several string constructions using ABNF [ABNF] and uses the following
ABNF rules: VCHAR, SP, DQUOTE, and LF. This document uses the following ABNF rules from
[STRUCTURED-FIELDS]: sf-string, inner-1ist, and parameters. This document uses the
following ABNF rules from [HTTP] and [HTTP/1.1]: field-content, obs-fold, and obs-text.

In addition to those listed above, this document uses the following terms:

Backman, et al. Standards Track Page 7

https://rfc-editor.org/rfc/rfc9110#section-6.4
https://rfc-editor.org/rfc/rfc8941#section-3

RFC 9421 HTTP Message Signatures February 2024

HTTP Message Signature:
A digital signature or keyed MAC that covers one or more portions of an HTTP message. Note
that a given HTTP message can contain multiple HTTP message signatures.

Signer:
The entity that is generating or has generated an HTTP message signature. Note that multiple

entities can act as signers and apply separate HTTP message signatures to a given HTTP
message.

Verifier:
An entity that is verifying or has verified an HTTP message signature against an HTTP

message. Note that an HTTP message signature may be verified multiple times, potentially by
different entities.

HTTP Message Component:
A portion of an HTTP message that is capable of being covered by an HTTP message signature.

Derived Component:
An HTTP message component derived from the HTTP message through the use of a specified
algorithm or process. See Section 2.2.

HTTP Message Component Name:
A String that identifies an HTTP message component's source, such as a field name or derived
component name.

HTTP Message Component Identifier:
The combination of an HTTP message component name and any parameters. This
combination uniquely identifies a specific HTTP message component with respect to a
particular HTTP message signature and the HTTP message it applies to.

HTTP Message Component Value:
The value associated with a given component identifier within the context of a particular
HTTP message. Component values are derived from the HTTP message and are usually subject
to a canonicalization process.

Covered Components:
An ordered set of HTTP message component identifiers for fields (Section 2.1) and derived
components (Section 2.2) that indicates the set of message components covered by the
signature, never including the @signature-params identifier itself. The order of this set is
preserved and communicated between the signer and verifier to facilitate reconstruction of
the signature base.

Signature Base:
The sequence of bytes generated by the signer and verifier using the covered components set
and the HTTP message. The signature base is processed by the cryptographic algorithm to
produce or verify the HTTP message signature.

Backman, et al. Standards Track Page 8

RFC 9421 HTTP Message Signatures February 2024

HTTP Message Signature Algorithm:
A cryptographic algorithm that describes the signing and verification process for the
signature, defined in terms of the HTTP_SIGN and HTTP_VERIFY primitives described in
Section 3.3.

Key Material:
The key material required to create or verify the signature. The key material is often
identified with an explicit key identifier, allowing the signer to indicate to the verifier which
key was used.

Creation Time:
A timestamp representing the point in time that the signature was generated, as asserted by
the signer.

Expiration Time:
A timestamp representing the point in time after which the signature should no longer be
accepted by the verifier, as asserted by the signer.

Target Message:
The HTTP message to which an HTTP message signature is applied.

Signature Context:
The data source from which the HTTP message component values are drawn. The context
includes the target message and any additional information the signer or verifier might have,
such as the full target URI of a request or the related request message for a response.

The term "UNIX timestamp" refers to what Section 4.16 of [POSIX.1] calls "seconds since the
Epoch".

This document contains non-normative examples of partial and complete HTTP messages. Some
examples use a single trailing backslash (\) to indicate line wrapping for long values, as per
[REC8792]. The \ character and leading spaces on wrapped lines are not part of the value.

1.2. Requirements

HTTP permits, and sometimes requires, intermediaries to transform messages in a variety of
ways. This can result in a recipient receiving a message that is not bitwise-equivalent to the
message that was originally sent. In such a case, the recipient will be unable to verify integrity
protections over the raw bytes of the sender's HTTP message, as verifying digital signatures or
MACs requires both signer and verifier to have the exact same signature base. Since the exact
raw bytes of the message cannot be relied upon as a reliable source for a signature base, the
signer and verifier have to independently create the signature base from their respective
versions of the message, via a mechanism that is resilient to safe changes that do not alter the
meaning of the message.

Backman, et al. Standards Track Page 9

RFC 9421 HTTP Message Signatures February 2024

For a variety of reasons, it is impractical to strictly define what constitutes a safe change versus
an unsafe one. Applications use HTTP in a wide variety of ways and may disagree on whether a
particular piece of information in a message (e.g., the message content, the method, or a
particular header field) is relevant. Thus, a general-purpose solution needs to provide signers
with some degree of control over which message components are signed.

HTTP applications may be running in environments that do not provide complete access to or
control over HTTP messages (such as a web browser's JavaScript environment) or may be using
libraries that abstract away the details of the protocol (such as the Java HTTP Client (HttpClient)
library). These applications need to be able to generate and verify signatures despite incomplete
knowledge of the HTTP message.

1.3. HTTP Message Transformations

As mentioned earlier, HTTP explicitly permits, and in some cases requires, implementations to
transform messages in a variety of ways. Implementations are required to tolerate many of these
transformations. What follows is a non-normative and non-exhaustive list of transformations
that could occur under HTTP, provided as context:

* Reordering of fields with different field names (Section 5.3 of [HTTP]).

» Combination of fields with the same field name (Section 5.2 of [HTTP]).

* Removal of fields listed in the Connection header field (Section 7.6.1 of [HTTP]).

* Addition of fields that indicate control options (Section 7.6.1 of [HTTP]).

» Addition or removal of a transfer coding (Section 7.7 of [HTTP]).

* Addition of fields such as Via (Section 7.6.3 of [HTTP]) and Forwarded (Section 4 of
[RFC7239])).

* Conversion between different versions of HTTP (e.g., HTTP/1.x to HTTP/2, or vice versa).

* Changes in case (e.g., "Origin" to "origin") of any case-insensitive components such as field
names, request URI scheme, or host.

* Changes to the request target and authority that, when applied together, do not result in a
change to the message's target URI, as defined in Section 7.1 of [HTTP].

Additionally, there are some transformations that are either deprecated or otherwise not allowed
but that could still occur in the wild. These transformations can still be handled without breaking
the signature; they include such actions as:

* Use, addition, or removal of leading or trailing whitespace in a field value.
» Use, addition, or removal of obs-fold in field values (Section 5.2 of [HTTP/1.1]).

We can identify these types of transformations as transformations that should not prevent
signature verification, even when performed on message components covered by the signature.
Additionally, all changes to components not covered by the signature should not prevent
signature verification.

Some examples of these kinds of transformations, and the effect they have on the message
signature, are found in Appendix B.4.

Backman, et al. Standards Track Page 10

https://openjdk.java.net/groups/net/httpclient/intro.html
https://openjdk.java.net/groups/net/httpclient/intro.html
https://rfc-editor.org/rfc/rfc9110#section-5.3
https://rfc-editor.org/rfc/rfc9110#section-5.2
https://rfc-editor.org/rfc/rfc9110#section-7.6.1
https://rfc-editor.org/rfc/rfc9110#section-7.6.1
https://rfc-editor.org/rfc/rfc9110#section-7.7
https://rfc-editor.org/rfc/rfc9110#section-7.6.3
https://rfc-editor.org/rfc/rfc7239#section-4
https://rfc-editor.org/rfc/rfc9110#section-7.1
https://rfc-editor.org/rfc/rfc9112#section-5.2

RFC 9421 HTTP Message Signatures February 2024

Other transformations, such as parsing and reserializing the field values of a covered component
or changing the value of a derived component, can cause a signature to no longer validate
against a target message. Applications of this specification need to take care to ensure that the
transformations expected by the application are adequately handled by the choice of covered
components.

1.4. Application of HTTP Message Signatures

HTTP message signatures are designed to be a general-purpose tool applicable in a wide variety
of circumstances and applications. In order to properly and safely apply HTTP message
signatures, an application or profile of this specification MUST specify, at a minimum, all of the
following items:

* The set of component identifiers (Section 2) and signature parameters (Section 2.3) that are
expected and required to be included in the covered components list. For example, an
authorization protocol could mandate that the Authorization field be covered to protect the
authorization credentials and mandate that the signature parameters contain a created
parameter (Section 2.3), while an API expecting semantically relevant HTTP message content
could require the Content-Digest field defined in [DIGEST] to be present and covered as well
as mandate a value for the tag parameter (Section 2.3) that is specific to the API being
protected.

* The expected Structured Field types [STRUCTURED-FIELDS] of any required or expected
covered component fields or parameters.

* A means of retrieving the key material used to verify the signature. An application will
usually use the keyid parameter of the signature parameters (Section 2.3) and define rules
for resolving a key from there, though the appropriate key could be known from other
means such as preregistration of a signer's key.

* The set of allowable signature algorithms to be used by signers and accepted by verifiers.

* A means of determining that the signature algorithm used to verify the signature is
appropriate for the key material and context of the message. For example, the process could
use the alg parameter of the signature parameters (Section 2.3) to state the algorithm
explicitly, derive the algorithm from the key material, or use some preconfigured algorithm
agreed upon by the signer and verifier.

* A means of determining that a given key and algorithm used for a signature are appropriate
for the context of the message. For example, a server expecting only ECDSA signatures
should know to reject any RSA signatures, or a server expecting asymmetric cryptography
should know to reject any symmetric cryptography.

* A means of determining the context for derivation of message components from an HTTP
message and its application context. While this is normally the target HTTP message itself,
the context could include additional information known to the application through
configuration, such as an external hostname.

o If binding between a request and response is needed using the mechanism provided in
Section 2.4, all elements of the request message and the response message that would be
required to provide properties of such a binding.

Backman, et al. Standards Track Page 11

RFC 9421 HTTP Message Signatures February 2024

* The error messages and codes that are returned from the verifier to the signer when the
signature is invalid, the key material is inappropriate, the validity time window is out of
specification, a component value cannot be calculated, or any other errors occur during the
signature verification process. For example, if a signature is being used as an authentication
mechanism, an HTTP status code of 401 (Unauthorized) or 403 (Forbidden) could be
appropriate. If the response is from an HTTP API, a response with an HTTP status code such
as 400 (Bad Request) could include more details [RFEC7807] [RFC9457], such as an indicator
that the wrong key material was used.

When choosing these parameters, an application of HTTP message signatures has to ensure that
the verifier will have access to all required information needed to recreate the signature base.
For example, a server behind a reverse proxy would need to know the original request URI to
make use of the derived component @target-uri, even though the apparent target URI would be
changed by the reverse proxy (see also Section 7.4.3). Additionally, an application using
signatures in responses would need to ensure that clients receiving signed responses have access
to all the signed portions of the message, including any portions of the request that were signed
by the server using the req ("request-response") parameter (Section 2.4).

Details regarding this kind of profiling are within the purview of the application and outside the
scope of this specification; however, some additional considerations are discussed in Section 7. In
particular, when choosing the required set of component identifiers, care has to be taken to
make sure that the coverage is sufficient for the application, as discussed in Sections 7.2.1 and
7.2.8. This specification defines only part of a full security system for an application. When
building a complete security system based on this tool, it is important to perform a security
analysis of the entire system, of which HTTP message signatures is a part. Historical systems,
such as AWS Signature Version 4 [AWS-SIGv4], can provide inspiration and examples of how to
apply similar mechanisms to an application, though review of such historical systems does not
negate the need for a security analysis of an application of HTTP message signatures.

2. HTTP Message Components

In order to allow signers and verifiers to establish which components are covered by a signature,
this document defines component identifiers for components covered by an HTTP message
signature, a set of rules for deriving and canonicalizing the values associated with these
component identifiers from the HTTP message, and the means for combining these canonicalized
values into a signature base.

The signature context for deriving these values MUST be accessible to both the signer and the
verifier of the message. The context MUST be the same across all components in a given
signature. For example, it would be an error to use the raw query string for the @query derived
component but combined query and form parameters for the @query-param derived component.
For more considerations regarding the message component context, see Section 7.4.3.

Backman, et al. Standards Track Page 12

RFC 9421 HTTP Message Signatures February 2024

A component identifier is composed of a component name and any parameters associated with
that name. Each component name is either an HTTP field name (Section 2.1) or a registered
derived component name (Section 2.2). The possible parameters for a component identifier are
dependent on the component identifier. The "HTTP Signature Component Parameters" registry,
which catalogs all possible parameters, is defined in Section 6.5.

Within a single list of covered components, each component identifier MUST occur only once.
One component identifier is distinct from another if the component name differs or if any of the
parameters differ for the same component name. Multiple component identifiers having the
same component name MAY be included if they have parameters that make them distinct, such
as "foo";bar and "foo" ;baz. The order of parameters MUST be preserved when processing a
component identifier (such as when parsing during verification), but the order of parameters is
not significant when comparing two component identifiers for equality checks. That is to say,
"foo" ;bar;baz cannot be in the same message as "foo" ;baz;bar, since these two component
identifiers are equivalent, but a system processing one form is not allowed to transform it into
the other form.

The component value associated with a component identifier is defined by the identifier itself.
Component values MUST NOT contain newline (\n) characters. Some HTTP message components
can undergo transformations that change the bitwise value without altering the meaning of the
component's value (for example, when combining field values). Message component values
therefore need to be canonicalized before they are signed, to ensure that a signature can be
verified despite such intermediary transformations. This document defines rules for each
component identifier that transform the identifier's associated component value into such a
canonical form.

The following sections define component identifier names, their parameters, their associated
values, and the canonicalization rules for their values. The method for combining message
components into the signature base is defined in Section 2.5.

2.1. HTTP Fields

The component name for an HTTP field is the lowercased form of its field name as defined in
Section 5.1 of [HTTP]. While HTTP field names are case insensitive, implementations MUST use
lowercased field names (e.g., content-type, date, etag) when using them as component names.

The component value for an HTTP field is the field value for the named field as defined in Section
5.5 of [HTTP]. The field value MUST be taken from the named header field of the target message
unless this behavior is overridden by additional parameters and rules, such as the req and tr
flags, below. For most fields, the field value is an ASCII string as recommended by [HTTP], and the
component value is exactly that string. Other encodings could exist in some implementations,
and all non-ASCII field values MUST be encoded to ASCII before being added to the signature
base. The bs parameter, as described in Section 2.1.3, provides a method for wrapping such
problematic field values.

Backman, et al. Standards Track Page 13

https://rfc-editor.org/rfc/rfc9110#section-5.1
https://rfc-editor.org/rfc/rfc9110#section-5.5
https://rfc-editor.org/rfc/rfc9110#section-5.5

RFC 9421 HTTP Message Signatures February 2024

Unless overridden by additional parameters and rules, HTTP field values MUST be combined into
a single value as defined in Section 5.2 of [HTTP] to create the component value. Specifically,
HTTP fields sent as multiple fields MUST be combined by concatenating the values using a single
comma and a single space as a separator ("," + " "). Note that intermediaries are allowed to
combine values of HTTP fields with any amount of whitespace between the commas, and if this
behavior is not accounted for by the verifier, the signature can fail, since the signer and verifier
will see a different component value in their respective signature bases. For robustness, it is
RECOMMENDED that signed messages include only a single instance of any field covered under
the signature, particularly with the value for any list-based fields serialized using the algorithm
below. This approach increases the chances of the field value remaining untouched through
intermediaries. Where that approach is not possible and multiple instances of a field need to be
sent separately, it is RECOMMENDED that signers and verifiers process any list-based fields taking
all individual field values and combining them based on the strict algorithm below, to counter
possible intermediary behavior. When the field in question is a Structured Field of type List or
Dictionary, this effect can be accomplished more directly by requiring the strict Structured Field
serialization of the field value, as described in Section 2.1.1.

Note that some HTTP fields, such as Set-Cookie [COOKIE], do not follow a syntax that allows for
the combination of field values in this manner (such that the combined output is unambiguous
from multiple inputs). Even though the component value is never parsed by the message
signature process and is used only as part of the signature base (Section 2.5), caution needs to be
taken when including such fields in signatures, since the combined value could be ambiguous.
The bs parameter, as described in Section 2.1.3, provides a method for wrapping such
problematic fields. See Section 7.5.6 for more discussion regarding this issue.

If the correctly combined value is not directly available for a given field by an implementation,
the following algorithm will produce canonicalized results for list-based fields:

1. Create an ordered list of the field values of each instance of the field in the message, in the
order they occur (or will occur) in the message.

2. Strip leading and trailing whitespace from each item in the list. Note that since HTTP field
values are not allowed to contain leading and trailing whitespace, this would be a no-op in a
compliant implementation.

3. Remove any obsolete line folding within the line, and replace it with a single space (" "), as
discussed in Section 5.2 of [HTTP/1.1]. Note that this behavior is specific to HTTP/1.1 and does
not apply to other versions of the HTTP specification, which do not allow internal line
folding.

4. Concatenate the list of values with a single comma (",") and a single space (" ") between each
item.

The resulting string is the component value for the field.

Backman, et al. Standards Track Page 14

https://rfc-editor.org/rfc/rfc9110#section-5.2
https://rfc-editor.org/rfc/rfc9112#section-5.2

RFC 9421 HTTP Message Signatures February 2024

Note that some HTTP fields have values with multiple valid serializations that have equivalent
semantics, such as allowing case-insensitive values that intermediaries could change.
Applications signing and processing such fields MUST consider how to handle the values of such
fields to ensure that the signer and verifier can derive the same value, as discussed in Section
7.5.2.

The following are non-normative examples of component values for header fields, given the
following example HTTP message fragment:

Host: www.example.com
Date: Tue, 20 Apr 2021 02:07:56 GMT
X-OWS-Header: Leading and trailing whitespace.
X-Obs-Fold-Header: Obsolete
line folding.
Cache-Control: max-age=60
Cache-Control: must-revalidate
Example-Dict: a=1, b=2;x=1;y=2, c=(a b «¢)

The following example shows the component values for these example header fields, presented
using the signature base format defined in Section 2.5:

"host": www.example.com

"date": Tue, 20 Apr 2021 02:07:56 GMT
"x-ows-header": Leading and trailing whitespace.
"x-obs-fold-header": Obsolete line folding.
"cache-control": max-age=60, must-revalidate
"example-dict": a=1, b=2;x=1;y=2, c=(a b c)

Empty HTTP fields can also be signed when present in a message. The canonicalized value is the
empty string. This means that the following empty header field, with (SP) indicating a single
trailing space character before the empty field value:

X-Empty-Header : (SP)

is serialized by the signature base generation algorithm (Section 2.5) with an empty string value
following the colon and space added after the component identifier.

"x-empty-header" : (SP)

Any HTTP field component identifiers MAY have the following parameters in specific
circumstances, each described in detail in their own sections:

sf A Boolean flag indicating that the component value is serialized using strict encoding of the
Structured Field value (Section 2.1.1).

Backman, et al. Standards Track Page 15

RFC 9421 HTTP Message Signatures February 2024

key A String parameter used to select a single member value from a Dictionary Structured Field
(Section 2.1.2).

bs A Boolean flag indicating that individual field values are encoded using Byte Sequence data
structures before being combined into the component value (Section 2.1.3).

req A Boolean flag for signed responses indicating that the component value is derived from
the request that triggered this response message and not from the response message directly.
Note that this parameter can also be applied to any derived component identifiers that target
the request (Section 2.4).

tr A Boolean flag indicating that the field value is taken from the trailers of the message as
defined in Section 6.5 of [HTTP]. If this flag is absent, the field value is taken from the header
fields of the message as defined in Section 6.3 of [HTTP] (Section 2.1.4).

Multiple parameters MAY be specified together, though some combinations are redundant or
incompatible. For example, the sf parameter's functionality is already covered when the key
parameter is used on a Dictionary item, since key requires strict serialization of the value. The bs
parameter, which requires the raw bytes of the field values from the message, is not compatible
with the use of the sf or key parameters, which require the parsed data structures of the field
values after combination.

Additional parameters can be defined in the "HTTP Signature Component Parameters" registry
established in Section 6.5.

2.1.1. Strict Serialization of HTTP Structured Fields

If the value of an HTTP field is known by the application to be a Structured Field type (as defined
in [STRUCTURED-FIELDS] or its extensions or updates) and the expected type of the Structured
Field is known, the signer MAY include the sf parameter in the component identifier. If this
parameter is included with a component identifier, the HTTP field value MUST be serialized using
the formal serialization rules specified in Section 4 of [STRUCTURED-FIELDS] (or the applicable
formal serialization section of its extensions or updates) applicable to the type of the HTTP field.
Note that this process will replace any optional internal whitespace with a single space character,
among other potential transformations of the value.

If multiple field values occur within a message, these values MUST be combined into a single List
or Dictionary structure before serialization.

If the application does not know the type of the field or does not know how to serialize the type
of the field, the use of this flag will produce an error. As a consequence, the signer can only
reliably sign fields using this flag when the verifier's system knows the type as well.

For example, the following Dictionary field is a valid serialization:

Example-Dict: a=1, b=2;x=1;y=2, c=(a b c)

If included in the signature base without parameters, its value would be:

Backman, et al. Standards Track Page 16

https://rfc-editor.org/rfc/rfc9110#section-6.5
https://rfc-editor.org/rfc/rfc9110#section-6.3
https://rfc-editor.org/rfc/rfc8941#section-4

RFC 9421 HTTP Message Signatures February 2024

"example-dict": a=1, b=2;x=1;y=2, c=(a b c)
However, if the sf parameter is added, the value is reserialized as follows:
"example-dict";sf: a=1, b=2;x=1;y=2, c=(a b c)

The resulting string is used as the component value; see Section 2.1.

2.1.2. Dictionary Structured Field Members

If a given field is known by the application to be a Dictionary Structured Field, an individual
member in the value of that Dictionary is identified by using the parameter key and the
Dictionary member key as a String value.

If multiple field values occur within a message, these values MUST be combined into a single
Dictionary structure before serialization.

An individual member value of a Dictionary Structured Field is canonicalized by applying the
serialization algorithm described in Section 4.1.2 of [STRUCTURED-FIELDS] on the member_value
and its parameters, not including the Dictionary key itself. Specifically, the value is serialized as
an Item or Inner List (the two possible values of a Dictionary member), with all parameters and
possible subfields serialized using the strict serialization rules defined in Section 4 of
[STRUCTURED-FIELDS] (or the applicable section of its extensions or updates).

Each parameterized key for a given field MUST NOT appear more than once in the signature base.
Parameterized keys MAY appear in any order in the signature base, regardless of the order they
occur in the source Dictionary.

If a Dictionary key is named as a covered component but it does not occur in the Dictionary, this
MUST cause an error in the signature base generation.

The following are non-normative examples of canonicalized values for Dictionary Structured
Field members, given the following example header field, whose value is known by the
application to be a Dictionary:

Example-Dict: a=1, b=2;x=1;y=2, c=(a b c), d

The following example shows canonicalized values for different component identifiers of this
field, presented using the signature base format discussed in Section 2.5:

"example-dict" ;key="a": 1
"example-dict" ;key="d": ?1
"example-dict" ;key="b": 2;x=1;y=2
"example-dict";key="c": (a b c)

Backman, et al. Standards Track Page 17

https://rfc-editor.org/rfc/rfc8941#section-4.1.2
https://rfc-editor.org/rfc/rfc8941#section-4

RFC 9421 HTTP Message Signatures February 2024

Note that the value for key="c" has been reserialized according to the strict member_value
algorithm, and the value for key="d" has been serialized as a Boolean value.

2.1.3. Binary-Wrapped HTTP Fields

If the value of the HTTP field in question is known by the application to cause problems with
serialization, particularly with the combination of multiple values into a single line as discussed
in Section 7.5.6, the signer SHOULD include the bs parameter in a component identifier to
indicate that the values of the field need to be wrapped as binary structures before being
combined.

If this parameter is included with a component identifier, the component value MUST be
calculated using the following algorithm:

1. Let the input be the ordered set of values for a field, in the order they appear in the message.
2. Create an empty List for accumulating processed field values.
3. For each field value in the set:

3.1. Strip leading and trailing whitespace from the field value. Note that since HTTP field

values are not allowed to contain leading and trailing whitespace, this would be a no-
op in a compliant implementation.

3.2. Remove any obsolete line folding within the line, and replace it with a single space ("
"), as discussed in Section 5.2 of [HTTP/1.1]. Note that this behavior is specific to [HTTP/
1.1] and does not apply to other versions of the HTTP specification.

3.3. Encode the bytes of the resulting field value as a Byte Sequence. Note that most fields
are restricted to ASCII characters, but other octets could be included in the value in
some implementations.

3.4. Add the Byte Sequence to the List accumulator.
4. The intermediate result is a List of Byte Sequence values.

5. Follow the strict serialization of a List as described in Section 4.1.1 of [STRUCTURED-FIELDS],
and return this output.

For example, the following field with internal commas prevents the distinct field values from
being safely combined:

Example-Header: value, with, lots
Example-Header: of, commas

In our example, the same field can be sent with a semantically different single value:

Example-Header: value, with, lots, of, commas

Both of these versions are treated differently by the application. However, if included in the
signature base without parameters, the component value would be the same in both cases:

Backman, et al. Standards Track Page 18

https://rfc-editor.org/rfc/rfc9112#section-5.2
https://rfc-editor.org/rfc/rfc8941#section-4.1.1

RFC 9421 HTTP Message Signatures February 2024

"example-header": value, with, lots, of, commas

However, if the bs parameter is added, the two separate instances are encoded and serialized as
follows:

"example-header" ;bs: :dmFsdWUsIHdpdGgsIGxvdHM=:, :b2YsIGNvbWThcw==:

For the single-instance field above, the encoding with the bs parameter is:

"example-header" ;bs: :dmFsdWUsIHdpdGgsIGxvdHMsIGOmLCBjb21tYXM=:

This component value is distinct from the multiple-instance field above, preventing a collision
that could potentially be exploited.

2.1.4. Trailer Fields

If the signer wants to include a trailer field in the signature, the signer MUST include the tr
Boolean parameter to indicate that the value MUST be taken from the trailer fields and not from
the header fields.

For example, given the following message:

HTTP/1.1 200 OK
Content-Type: text/plain
Transfer-Encoding: chunked
Trailer: Expires

4

HTTP

7

Message

a

Signatures

0

Expires: Wed, 9 Nov 2022 07:28:00 GMT

The signer decides to add both the Trailer header field and the Expires trailer field to the
signature base, along with the status code derived component:

"@status": 200
"trailer": Expires
"expires";tr: Wed, 9 Nov 2022 07:28:00 GMT

If a field is available as both a header and a trailer in a message, both values MAY be signed, but
the values MUST be signed separately. The values of header fields and trailer fields of the same
name MUST NOT be combined for purposes of the signature.

Backman, et al. Standards Track Page 19

RFC 9421 HTTP Message Signatures February 2024

Since trailer fields could be merged into the header fields or dropped entirely by intermediaries
as per Section 6.5.1 of [HTTP], it is NOT RECOMMENDED to include trailers in the signature unless
the signer knows that the verifier will have access to the values of the trailers as sent.

2.2. Derived Components

In addition to HTTP fields, there are a number of different components that can be derived from
the control data, signature context, or other aspects of the HTTP message being signed. Such
derived components can be included in the signature base by defining a component name,
possible parameters, message targets, and the derivation method for its component value.

Derived component names MUST start with the "at" (@) character. This differentiates derived
component names from HTTP field names, which cannot contain the @ character as per Section
5.1 of [HTTP]. Processors of HTTP message signatures MUST treat derived component names
separately from field names, as discussed in Section 7.5.1.

This specification defines the following derived components:

@method The method used for a request (Section 2.2.1).

@target-uri The full target URI for a request (Section 2.2.2).

@authority The authority of the target URI for a request (Section 2.2.3).
@scheme The scheme of the target URI for a request (Section 2.2.4).
@request-target The request target (Section 2.2.5).

@path The absolute path portion of the target URI for a request (Section 2.2.6).
@query The query portion of the target URI for a request (Section 2.2.7).

@query-param A parsed and encoded query parameter of the target URI for a request (Section
2.2.8).

@status The status code for a response (Section 2.2.9).

Additional derived component names are defined in the "HTTP Signature Derived Component
Names" registry (Section 6.4).

Derived component values are taken from the context of the target message for the signature.
This context includes information about the message itself, such as its control data, as well as any
additional state and context held by the signer or verifier. In particular, when signing a response,
the signer can include any derived components from the originating request by using the req
parameter (Section 2.4).

request:

Backman, et al. Standards Track Page 20

https://rfc-editor.org/rfc/rfc9110#section-6.5.1
https://rfc-editor.org/rfc/rfc9110#section-5.1
https://rfc-editor.org/rfc/rfc9110#section-5.1

RFC 9421 HTTP Message Signatures February 2024

Values derived from, and results applied to, an HTTP request message as described in Section
3.4 of [HTTP]. If the target message of the signature is a response, derived components that
target request messages can be included by using the req parameter as defined in Section 2.4.

response: Values derived from, and results applied to, an HTTP response message as described
in Section 3.4 of [HTTP].

request, response: Values derived from, and results applied to, either a request message or a
response message.

A derived component definition MUST define all target message types to which it can be applied.

Derived component values MUST be limited to printable characters and spaces and MUST NOT
contain any newline characters. Derived component values MUST NOT start or end with
whitespace characters.

2.2.1. Method

The @method derived component refers to the HTTP method of a request message. The
component value is canonicalized by taking the value of the method as a string. Note that the
method name is case sensitive as per [HTTP], Section 9.1. While conventionally standardized
method names are uppercase [ASCII], no transformation to the input method value's case is
performed.

For example, the following request message:

POST /path?param=value HTTP/1.1
Host: www.example.com

would result in the following @method component value:

POST

and the following signature base line:

"@method" : POST

2.2.2. Target URI

The @target-uri derived component refers to the target URI of a request message. The
component value is the target URI of the request ((HTTP], Section 7.1), assembled from all
available URI components, including the authority.

For example, the following message sent over HTTPS:

Backman, et al. Standards Track Page 21

https://rfc-editor.org/rfc/rfc9110#section-3.4
https://rfc-editor.org/rfc/rfc9110#section-3.4
https://rfc-editor.org/rfc/rfc9110#section-3.4
https://rfc-editor.org/rfc/rfc9110#section-9.1
https://rfc-editor.org/rfc/rfc9110#section-7.1

RFC 9421 HTTP Message Signatures February 2024

POST /path?param=value HTTP/1.1
Host: www.example.com

would result in the following @target-uri component value:

https://www.example.com/path?param=value

and the following signature base line:

"@target-uri": https://www.example.com/path?param=value

2.2.3. Authority

The @authority derived component refers to the authority component of the target URI of the
HTTP request message, as defined in [HTTP], Section 7.2. In HTTP/1.1, this is usually conveyed
using the Host header field, while in HTTP/2 and HTTP/3 it is conveyed using the :authority
pseudo-header. The value is the fully qualified authority component of the request, comprised of
the host and, optionally, port of the request target, as a string. The component value MUST be
normalized according to the rules provided in [HTTP], Section 4.2.3. Namely, the hostname is
normalized to lowercase, and the default port is omitted.

For example, the following request message:

POST /path?param=value HTTP/1.1
Host: www.example.com

would result in the following @authority component value:

www . example.com

and the following signature base line:

"@authority": www.example.com

The @authority derived component SHOULD be used instead of signing the Host header field
directly. See Section 7.2.4.

2.2.4. Scheme

The @scheme derived component refers to the scheme of the target URL of the HTTP request
message. The component value is the scheme as a lowercase string as defined in [HTTP], Section
4.2. While the scheme itself is case insensitive, it MUST be normalized to lowercase for inclusion
in the signature base.

Backman, et al. Standards Track Page 22

https://rfc-editor.org/rfc/rfc9110#section-7.2
https://rfc-editor.org/rfc/rfc9110#section-4.2.3
https://rfc-editor.org/rfc/rfc9110#section-4.2
https://rfc-editor.org/rfc/rfc9110#section-4.2

RFC 9421 HTTP Message Signatures February 2024

For example, the following request message sent over plain HTTP:

POST /path?param=value HTTP/1.1
Host: www.example.com

would result in the following @scheme component value:

http

and the following signature base line:

"@scheme": http

2.2.5. Request Target

The @request-target derived component refers to the full request target of the HTTP request
message, as defined in [HTTP], Section 7.1. The component value of the request target can take
different forms, depending on the type of request, as described below.

For HTTP/1.1, the component value is equivalent to the request target portion of the request line.
However, this value is more difficult to reliably construct in other versions of HTTP. Therefore, it
is NOT RECOMMENDED that this component be used when versions of HTTP other than 1.1 might
be in use.

The origin form value is a combination of the absolute path and query components of the
request URL.

For example, the following request message:

POST /path?param=value HTTP/1.1
Host: www.example.com

would result in the following @request-target component value:

/path?param=value

and the following signature base line:

"@request-target": /path?param=value

The following request to an HTTP proxy with the absolute-form value, containing the fully
qualified target URI:

Backman, et al. Standards Track Page 23

https://rfc-editor.org/rfc/rfc9110#section-7.1

RFC 9421 HTTP Message Signatures February 2024

GET https://www.example.com/path?param=value HTTP/1.1

would result in the following @request-target component value:

https://www.example.com/path?param=value

and the following signature base line:

"@request-target": https://www.example.com/path?param=value

The following CONNECT request with an authority-form value, containing the host and port of
the target:

CONNECT www.example.com:808 HTTP/1.1
Host: www.example.com

would result in the following @request-target component value:

www .example.com:80

and the following signature base line:

"@request-target": www.example.com:80

The following OPTIONS request message with the asterisk-form value, containing a single
asterisk (*) character:

OPTIONS * HTTP/1.1
Host: www.example.com

would result in the following @request-target component value:

and the following signature base line:

"@request-target": *

Backman, et al. Standards Track Page 24

RFC 9421 HTTP Message Signatures February 2024

2.2.6. Path

The @path derived component refers to the target path of the HTTP request message. The
component value is the absolute path of the request target defined by [URI], with no query
component and no trailing question mark (?) character. The value is normalized according to the
rules provided in [HTTP], Section 4.2.3. Namely, an empty path string is normalized as a single
slash (/) character. Path components are represented by their values before decoding any
percent-encoded octets, as described in the simple string comparison rules provided in Section
6.2.1 of [URI].

For example, the following request message:

GET /path?param=value HTTP/1.1
Host: www.example.com

would result in the following @path component value:
/path
and the following signature base line:
"@path": /path
2.2.7. Query
The @query derived component refers to the query component of the HTTP request message. The
component value is the entire normalized query string defined by [URI], including the leading ?

character. The value is read using the simple string comparison rules provided in Section 6.2.1 of
[URI]. Namely, percent-encoded octets are not decoded.

For example, the following request message:

GET /path?param=value&foo=bar&baz=bat%2Dman HTTP/1.1
Host: www.example.com

would result in the following @query component value:

?param=value&foo=bar&baz=bat%2Dman

and the following signature base line:

"@query": ?param=value&foo=bar&baz=bat%2Dman

Backman, et al. Standards Track Page 25

https://rfc-editor.org/rfc/rfc9110#section-4.2.3
https://rfc-editor.org/rfc/rfc3986#section-6.2.1
https://rfc-editor.org/rfc/rfc3986#section-6.2.1
https://rfc-editor.org/rfc/rfc3986#section-6.2.1

RFC 9421 HTTP Message Signatures February 2024

The following request message:

POST /path?queryString HTTP/1.1
Host: www.example.com

would result in the following @query component value:
?queryString

and the following signature base line:
"@query": ?queryString

Just like including an empty path component, the signer can include an empty query component
to indicate that this component is not used in the message. If the query string is absent from the
request message, the component value is the leading ? character alone:

resulting in the following signature base line:
"@query": ?

2.2.8. Query Parameters

If the query portion of a request target URI uses HTML form parameters in the format defined in
Section 5 ("application/x-www-form-urlencoded") of [HTMLURLY], the @query-param derived
component allows addressing of these individual query parameters. The query parameters MUST
be parsed according to Section 5.1 ("application/x-www-form-urlencoded parsing") of
[HTMLURL], resulting in a list of (nameString, valueString) tuples. The REQUIRED name
parameter of each component identifier contains the encoded nameString of a single query
parameter as a String value. The component value of a single named parameter is the encoded
valueString of that single query parameter. Several different named query parameters MAY be
included in the covered components. Single named parameters MAY occur in any order in the
covered components, regardless of the order they occur in the query string.

The value of the name parameter and the component value of a single named parameter are
calculated via the following process:

1. Parse the nameString or valueString of the named query parameter defined by Section 5.1
("application/x-www-form-urlencoded parsing") of [HTMLURLY]; this is the value after
percent-encoded octets are decoded.

Backman, et al. Standards Track Page 26

https://url.spec.whatwg.org/#application/x-www-form-urlencoded
https://url.spec.whatwg.org/#application/x-www-form-urlencoded
https://url.spec.whatwg.org/#urlencoded-parsing
https://url.spec.whatwg.org/#urlencoded-parsing
https://url.spec.whatwg.org/#urlencoded-parsing
https://url.spec.whatwg.org/#urlencoded-parsing

RFC 9421 HTTP Message Signatures February 2024

2. Encode the nameString or valueString using the "percent-encode after encoding" process
defined by Section 5.2 ("application/x-www-form-urlencoded serializing") of [HTMLURL];
this results in an ASCII string [ASCII].

3. Output the ASCII string.

Note that the component value does not include any leading question mark (?) characters, equals
sign (=) characters, or separating ampersand (&) characters. Named query parameters with an
empty valueString have an empty string as the component value. Note that due to
inconsistencies in implementations, some query parameter parsing libraries drop such empty
values.

If a query parameter is named as a covered component but it does not occur in the query
parameters, this MUST cause an error in the signature base generation.

For example, for the following request:

GET /path?param=value&foo=bar&baz=batman&qux= HTTP/1.1
Host: www.example.com

Indicating the baz, qux, and param named query parameters would result in the following
@query-param component values:

baz: batman
qux: an empty string
param: value

and the following signature base lines, with (SP) indicating a single trailing space character
before the empty component value:

"@query-param" ;name="baz": batman
"@query-param" ;name="qux": (SP)
"@query-param” ;name="param": value

This derived component has some limitations. Specifically, the algorithms provided in Section 5
("application/x-www-form-urlencoded") of [HTMLURL] only support query parameters using
percent-escaped UTF-8 encoding. Other encodings are not supported. Additionally, multiple
instances of a named parameter are not reliably supported in the wild. If a parameter name
occurs multiple times in a request, the named query parameter MUST NOT be included. If
multiple parameters are common within an application, it iS RECOMMENDED to sign the entire
query string using the @query component identifier defined in Section 2.2.7.

The encoding process allows query parameters that include newlines or other problematic
characters in their values, or with alternative encodings such as using the plus (+) character to
represent spaces. For the query parameters in this message:

Backman, et al. Standards Track Page 27

https://url.spec.whatwg.org/#urlencoded-serializing
https://url.spec.whatwg.org/#urlencoded-serializing
https://url.spec.whatwg.org/#application/x-www-form-urlencoded
https://url.spec.whatwg.org/#application/x-www-form-urlencoded

RFC 9421 HTTP Message Signatures February 2024

NOTE: '\' line wrapping per RFC 8792

GET /parameters?var=this%201s%20a%20big%0Amultiline%20value&\
bar=with+plus+whitespace&fa%C3%A7ade%22%3A%20=something HTTP/1.1

Host: www.example.com

Date: Tue, 20 Apr 2021 02:07:56 GMT

The resulting values are encoded as follows:

"@query-param” ;name="var": this%201s%20a%20big%0Amultiline%20value
"@query-param" ;name="bar": with%20plus%20whitespace
"@query-param" ;name="fa%C3%A7ade%22%3A%20" : something

If the encoding were not applied, the resultant values would be:

"@query-param" ;name="var": this is a big
multiline value

"@query-param” ;name="bar": with plus whitespace
"@query-param" ;name="facade\": ": something

This base string contains characters that violate the constraints on component names and values
and is therefore invalid.

2.2.9. Status Code

The @status derived component refers to the three-digit numeric HTTP status code of a response
message as defined in [HTTP], Section 15. The component value is the serialized three-digit
integer of the HTTP status code, with no descriptive text.

For example, the following response message:

HTTP/1.1 260 OK
Date: Fri, 26 Mar 2010 00:05:00 GMT

would result in the following @status component value:

200

and the following signature base line:

"@status": 200

The @status component identifier MUST NOT be used in a request message.

Backman, et al. Standards Track Page 28

https://rfc-editor.org/rfc/rfc9110#section-15

RFC 9421 HTTP Message Signatures February 2024

2.3. Signature Parameters

HTTP message signatures have metadata properties that provide information regarding the
signature's generation and verification, consisting of the ordered set of covered components and
the ordered set of parameters, where the parameters include a timestamp of signature creation,
identifiers for verification key material, and other utilities. This metadata is represented by a
special message component in the signature base for signature parameters; this special message
component is treated slightly differently from other message components. Specifically, the
signature parameters message component is REQUIRED as the last line of the signature base
(Section 2.5), and the component identifier MUST NOT be enumerated within the set of covered
components for any signature, including itself.

The signature parameters component name is @signature-params.

The signature parameters component value is the serialization of the signature parameters for
this signature, including the covered components ordered set with all associated parameters.
These parameters include any of the following:

created: Creation time as a UNIX timestamp value of type Integer. Sub-second precision is not
supported. The inclusion of this parameter is RECOMMENDED.

expires: Expiration time as a UNIX timestamp value of type Integer. Sub-second precision is
not supported.

nonce: A random unique value generated for this signature as a String value.

alg: The HTTP message signature algorithm from the "HTTP Signature Algorithms" registry, as
a String value.

keyid: The identifier for the key material as a String value.

tag: An application-specific tag for the signature as a String value. This value is used by
applications to help identify signatures relevant for specific applications or protocols.

Additional parameters can be defined in the "HTTP Signature Metadata Parameters" registry
(Section 6.3). Note that the parameters are not in any general order, but once an ordering is
chosen for a given set of parameters, it cannot be changed without altering the signature
parameters value.

The signature parameters component value is serialized as a parameterized Inner List using the
rules provided in Section 4 of [STRUCTURED-FIELDS] as follows:

1. Let the output be an empty string.

2. Determine an order for the component identifiers of the covered components, not including
the @signature-params component identifier itself. Once this order is chosen, it cannot be
changed. This order MUST be the same order as that used in creating the signature base
(Section 2.5).

Backman, et al. Standards Track Page 29

https://rfc-editor.org/rfc/rfc8941#section-4

RFC 9421 HTTP Message Signatures February 2024

3. Serialize the component identifiers of the covered components, including all parameters, as
an ordered Inner List of String values according to Section 4.1.1.1 of [STRUCTURED-FIELDS];
then, append this to the output. Note that the component identifiers can include their own
parameters, and these parameters are ordered sets. Once an order is chosen for a
component's parameters, the order cannot be changed.

4. Determine an order for any signature parameters. Once this order is chosen, it cannot be
changed.

5. Append the parameters to the Inner List in order according to Section 4.1.1.2 of
[STRUCTURED-FIELDS], skipping parameters that are not available or not used for this
message signature.

6. The output contains the signature parameters component value.

Note that the Inner List serialization from Section 4.1.1.1 of [STRUCTURED-FIELDS] is used for the
covered component value instead of the List serialization from Section 4.1.1 of [STRUCTURED-
FIELDS] in order to facilitate parallelism with this value's inclusion in the Signature-Input field,
as discussed in Section 4.1.

This example shows the serialized component value for the parameters of an example message
signature:

NOTE: "\' line wrapping per RFC 8792

("@target-uri" "@authority" "date" "cache-control")\
;keyid="test-key-rsa-pss"”;alg="rsa-pss-sha512";\
created=1618884475;expires=1618884775

Note that an HTTP message could contain multiple signatures (Section 4.3), but only the signature
parameters used for a single signature are included in a given signature parameters entry.

2.4. Signing Request Components in a Response Message

When a request message results in a signed response message, the signer can include portions of
the request message in the signature base by adding the req parameter to the component
identifier.

req A Boolean flag indicating that the component value is derived from the request that
triggered this response message and not from the response message directly.

This parameter can be applied to both HTTP fields and derived components that target the
request, with the same semantics. The component value for a message component using this
parameter is calculated in the same manner as it is normally, but data is pulled from the request
message instead of the target response message to which the signature is applied.

Note that the same component name MAY be included with and without the req parameter in a
single signature base, indicating the same named component from both the request message and
the response message.

Backman, et al. Standards Track Page 30

https://rfc-editor.org/rfc/rfc8941#section-4.1.1.1
https://rfc-editor.org/rfc/rfc8941#section-4.1.1.2
https://rfc-editor.org/rfc/rfc8941#section-4.1.1.1
https://rfc-editor.org/rfc/rfc8941#section-4.1.1

RFC 9421 HTTP Message Signatures February 2024

The req parameter MAY be combined with other parameters as appropriate for the component
identifier, such as the key parameter for a Dictionary field.

For example, when serving a response for this request:

NOTE: "\' line wrapping per RFC 8792

POST /foo?param=Value&Pet=dog HTTP/1.1

Host: example.com

Date: Tue, 20 Apr 2021 02:07:55 GMT

Content-Digest: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+T\
aPm+AbwAgBWnrIiY11u7BNNyealdVLVRWEMTHWXvJwew==:

Content-Type: application/json

Content-Length: 18

{"hello": "world"}

This would result in the following unsigned response message:

NOTE: "\' line wrapping per RFC 8792

HTTP/1.1 503 Service Unavailable

Date: Tue, 20 Apr 2021 02:07:56 GMT

Content-Type: application/json

Content-Length: 62

Content-Digest: sha-512=:0Y6iCBzGg5rZtoXS95Ijz03ms1f6KAMC1oESHObfwn\
HJDbkkWWQz6PhhU9kxsTbARtY2PTBOzq24uJFpHsMuAg==:

{"busy": true, "message": "Your call is very important to us"}

The server signs the response with its own key, including the @status code and several header
fields in the covered components. While this covers a reasonable amount of the response for this
application, the server additionally includes several components derived from the original
request message that triggered this response. In this example, the server includes the method,
authority, path, and content digest from the request in the covered components of the response.
The Content-Digest for both the request and the response is included under the response
signature. For the application in this example, the query is deemed not to be relevant to the
response and is therefore not covered. Other applications would make different decisions based
on application needs, as discussed in Section 1.4.

The signature base for this example is:

Backman, et al. Standards Track Page 31

RFC 9421 HTTP Message Signatures February 2024

NOTE: '\' line wrapping per RFC 8792

"@status": 503

"content-digest": sha-512=:0Y61CBzGg5rZtoXS95Ijz03ms1f6KAMC1oESHObT\
wnHJDbkkWWQz6PhhU9kxsTbARtY2PTB0zq24uJFpHsMuAg==:

"content-type": application/json

"@authority";req: example.com

"@method" ;req: POST

"@path";req: /foo

"content-digest";req: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A\
2svX+TaPm+AbwAgBWnrIiY11lu7BNNyealdVLVRWEMTHWXvJwew==:

"@signature-params": ("@status" "content-digest" "content-type" \
"@authority";req "@method";req "@path";req "content-digest";req)\
;created=1618884479;keyid="test-key-ecc-p256"

The signed response message is:

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 503 Service Unavailable

Date: Tue, 20 Apr 2021 02:07:56 GMT

Content-Type: application/json

Content-Length: 62

Content-Digest: sha-512=:0Y6iCBzGg5rZtoXS95I1jz03ms1f6KAMC1oESHObfwn\
HJDbkkWWQz6PhhU9kxsTbARtY2PTB0Ozq24uJFpHsMuAg==:

Signature-Input: reqres=("@status" "content-digest" "content-type" \
"@authority";req "@method";req "@path";req "content-digest";req)\
;created=1618884479;keyid="test-key-ecc-p256"

Signature: reqres=:dMT/A/76ehrdBTD/2Xx8QuKV6FoyzEP/I9hdzKN8LQJLNgzU\
AW767HKO5rx118meNQQgQPgQp8wq2ive3tV5Ag==:

{"busy": true, "message": "Your call is very important to us"}

Note that the ECDSA signature algorithm in use here is non-deterministic, meaning that a
different signature value will be created every time the algorithm is run. The signature value
provided here can be validated against the given keys, but newly generated signature values are
not expected to match the example. See Section 7.3.5.

Since the component values from the request are not repeated in the response message, the
requester MUST keep the original message component values around long enough to validate the
signature of the response that uses this component identifier parameter. In most cases, this
means the requester needs to keep the original request message around, since the signer could
choose to include any portions of the request in its response, according to the needs of the
application. Since it is possible for an intermediary to alter a request message before it is
processed by the server, applications need to take care not to sign such altered values, as the
client would not be able to validate the resulting signature.

It is also possible for a server to create a signed response in response to a signed request. For this
example of a signed request:

Backman, et al. Standards Track Page 32

RFC 9421 HTTP Message Signatures February 2024

NOTE: '\' line wrapping per RFC 8792

POST /foo?param=Value&Pet=dog HTTP/1.1

Host: example.com

Date: Tue, 20 Apr 2021 02:07:55 GMT

Content-Digest: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+T\
aPm+AbwAgBWnrIiY1lu7BNNyealdVLVRWEMTHWXvJwew==:

Content-Type: application/json

Content-Length: 18

Signature-Input: sig1=("@method" "@authority" "@path" "@query" \
"content-digest" "content-type" "content-length")\
;created=1618884475;keyid="test-key-rsa-pss"

Signature: sig1=:e8UJ5wMiRaonlth5ERtE8GIiEH7Akcr493nQB7VPNo6y3qvjdK\
t0fo8VHO8XxXDjmtYoatGYBGJVIMfIpB6eVMEYNW2I4vN7XDAZz7m5v1108vGzaDljr\
dOH8+SJ28g7bzn6h2xel /8q+qUwahWA/JmC8a0C91iVnwbOKCcOWSrLgWQwTY6VLp4\
2Qt73jjhYT5W7 /wCvfK9ATVmMHH11JXsV873Z6hpxesd50PSmO+xaNeYvDLvVdZ1htw\
5PCtUYzKjHqwmaQ6DEuUM8udRjYsoNqp2xZKcuCO1nKcBV3RjpgMZLuuyVbHDAbCzr\
0pg2d2VM/0C33JAU7meEjjaNz+d7LWPg==:

{"hello": "world"}

The server could choose to sign portions of this response, including several portions of the
request, resulting in this signature base:

NOTE: "\' line wrapping per RFC 8792

"@status”: 503

"content-digest": sha-512=:0Y6iCBzGg5rZtoXS95Ijz03ms1f6KAMCLoESHObT\
wnHJDbkkWWQz6PhhU9kxsTbARtY2PTB0zq24uJFpHsMuAg==:

"content-type": application/json

"@authority";req: example.com

"@method" ;req: POST

"@path";req: /foo

"@query";req: ?param=Value&Pet=dog

"content-digest";req: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A\
2svX+TaPm+AbwAgBWnrIiY11lu7BNNyealdVLVRWEMTHWXvJwew==:

"content-type";req: application/json

"content-length";req: 18

"@signature-params": ("@status" "content-digest" "content-type" \
"@authority";req "@method";req "@path";req "@query";req \
"content-digest";req "content-type";req "content-length";req)\
;created=1618884479;keyid="test-key-ecc-p256"

and the following signed response:

Backman, et al. Standards Track Page 33

RFC 9421 HTTP Message Signatures February 2024

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 503 Service Unavailable

Date: Tue, 20 Apr 2021 02:07:56 GMT

Content-Type: application/json

Content-Length: 62

Content-Digest: sha-512=:0Y6iCBzGg5rZtoXS95Ijz03ms1f6KAMCLoESHObfwn\
HJDbkkWWQz6PhhU9kxsTbARtY2PTB0zq24uJFpHsMuAg==:

Signature-Input: reqres=("@status" "content-digest" "content-type" \
"@authority"”;req "@method";req "@path";req "@query";req \
"content-digest";req "content-type";req "content-length";req)\
;created=1618884479 ;keyid="test-key-ecc-p256"

Signature: reqres=:C73J41GVKc+TYXbSobvZfOCmNcptRiWN+NY10r0A36ISg6ym\
dRN6ZgR2Qf rtopFNzgAyv+CeWrMsNbcV20jsgg==:

{"busy": true, "message": "Your call is very important to us"}

Note that the ECDSA signature algorithm in use here is non-deterministic, meaning that a
different signature value will be created every time the algorithm is run. The signature value
provided here can be validated against the given keys, but newly generated signature values are
not expected to match the example. See Section 7.3.5.

Applications signing a response to a signed request SHOULD sign all of the components of the
request signature value to provide sufficient coverage and protection against a class of collision
attacks, as discussed in Section 7.3.7. The server in this example has included all components
listed in the Signature-Input field of the client's signature on the request in the response
signature, in addition to components of the response.

While it is syntactically possible to include the Signature and Signature-Input fields of the
request message in the signature components of a response to a message using this mechanism,
this practice is NOT RECOMMENDED. This is because signatures of signatures do not provide
transitive coverage of covered components as one might expect, and the practice is susceptible to
several attacks as discussed in Section 7.3.7. An application that needs to signal successful
processing or receipt of a signature would need to carefully specify alternative mechanisms for
sending such a signal securely.

The response signature can only ever cover what is included in the request message when using
this flag. Consequently, if an application needs to include the message content of the request
under the signature of its response, the client needs to include a means for covering that content,
such as a Content-Digest field. See the discussion in Section 7.2.8 for more information.

The req parameter MUST NOT be used for any component in a signature that targets a request
message.

Backman, et al. Standards Track Page 34

RFC 9421 HTTP Message Signatures February 2024

2.5. Creating the Signature Base

The signature base is an ASCII string [ASCII] containing the canonicalized HTTP message
components covered by the signature. The input to the signature base creation algorithm is the
ordered set of covered component identifiers and their associated values, along with any
additional signature parameters discussed in Section 2.3.

Component identifiers are serialized using the strict serialization rules defined by [STRUCTURED-
FIELDS], Section 4. The component identifier has a component name, which is a String Item
value serialized using the sf-string ABNF rule. The component identifier MAY also include
defined parameters that are serialized using the parameters ABNF rule. The signature
parameters line defined in Section 2.3 follows this same pattern, but the component identifier is
a String Item with a fixed value and no parameters, and the component value is always an Inner
List with optional parameters.

Note that this means the serialization of the component name itself is encased in double quotes,
with parameters following as a semicolon-separated list, such as "cache-control”,
"@authority"”, "@signature-params”, or "example-dictionary" ;key="foo".

The output is the ordered set of bytes that form the signature base, which conforms to the
following ABNF:

signature-base = *(signature-base-line LF) signature-params-line
signature-base-line = component-identifier ":" SP
(derived-component-value / *field-content)
; no obs-fold nor obs-text
component-identifier = component-name parameters
component-name = sf-string
derived-component-value = *(VCHAR / SP)
signature-params-1line = DQUOTE "@signature-params" DQUOTE
":" SP inner-list

To create the signature base, the signer or verifier concatenates entries for each component
identifier in the signature's covered components (including their parameters) using the following
algorithm. All errors produced as described MUST fail the algorithm immediately, without
outputting a signature base.

1. Let the output be an empty string.
2. For each message component item in the covered components set (in order):
2.1. If the component identifier (including its parameters) has already been added to the
signature base, produce an error.

2.2. Append the component identifier for the covered component serialized according to
the component-identifier ABNF rule. Note that this serialization places the
component name in double quotes and appends any parameters outside of the quotes.

2.3. Append a single colon (:).

Backman, et al. Standards Track Page 35

https://rfc-editor.org/rfc/rfc8941#section-4

RFC 9421 HTTP Message Signatures February 2024

2.4. Append a single space (" ").
2.5. Determine the component value for the component identifier.

o If the component identifier has a parameter that is not understood, produce an
error.

o If the component identifier has parameters that are mutually incompatible with one
another, such as bs and sf, produce an error.

o If the component identifier contains the req parameter and the target message is a
request, produce an error.

o If the component identifier contains the req parameter and the target message is a
response, the context for the component value is the related request message of the
target response message. Otherwise, the context for the component value is the
target message.

o If the component name starts with an "at" (@) character, derive the component's
value from the message according to the specific rules defined for the derived
component, as provided in Section 2.2, including processing of any known valid
parameters. If the derived component name is unknown or the value cannot be
derived, produce an error.

o If the component name does not start with an "at" (@) character, canonicalize the
HTTP field value as described in Section 2.1, including processing of any known
valid parameters. If the field cannot be found in the message or the value cannot be
obtained in the context, produce an error.

2.6. Append the covered component's canonicalized component value.
2.7. Append a single newline (\n).

3. Append the signature parameters component (Section 2.3) according to the signature-
params-1line rule as follows:

3.1. Append the component identifier for the signature parameters serialized according to
the component-identifier rule, i.e., the exact value "@signature-params" (including
double quotes).

3.2. Append a single colon (:).
3.3. Append a single space (" ").

3.4. Append the signature parameters' canonicalized component values as defined in
Section 2.3, i.e., Inner List Structured Field values with parameters.

4. Produce an error if the output string contains any non-ASCII characters [ASCII].
5. Return the output string.

If covered components reference a component identifier that cannot be resolved to a component
value in the message, the implementation MUST produce an error and not create a signature
base. Such situations include, but are not limited to, the following:

* The signer or verifier does not understand the derived component name.

* The component name identifies a field that is not present in the message or whose value is
malformed.

Backman, et al. Standards Track Page 36

RFC 9421 HTTP Message Signatures February 2024

* The component identifier includes a parameter that is unknown or does not apply to the
component identifier to which it is attached.

* The component identifier indicates that a Structured Field serialization is used (via the sf
parameter), but the field in question is known to not be a Structured Field or the type of
Structured Field is not known to the implementation.

» The component identifier is a Dictionary member identifier that references a field that is not
present in the message, that is not a Dictionary Structured Field, or whose value is
malformed.

» The component identifier is a Dictionary member identifier or a named query parameter
identifier that references a member that is not present in the component value or whose
value is malformed. For example, the identifier is "example-dict" ;key="c", and the value
of the Example-Dict header field is a=1, b=2, which does not have the c value.

In the following non-normative example, the HTTP message being signed is the following
request:

NOTE: '\' line wrapping per RFC 8792

POST /foo?param=Value&Pet=dog HTTP/1.1

Host: example.com

Date: Tue, 20 Apr 2021 02:07:55 GMT

Content-Type: application/json

Content-Digest: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+T\
aPm+AbwAgBWnrIiY11lu7BNNyealdVLvRWEmTHWXvJwew==:

Content-Length: 18

{"hello": "world"}

The covered components consist of the @method, @authority, and @path derived components
followed by the Content-Digest, Content-Length, and Content-Type HTTP header fields, in
order. The signature parameters consist of a creation timestamp of 1618884473 and a key
identifier of test-key-rsa-pss. Note that no explicit alg parameter is given here, since the
verifier is known by the application to use the RSA-PSS algorithm based on the identified key. The
signature base for this message with these parameters is:

Backman, et al. Standards Track Page 37

RFC 9421 HTTP Message Signatures February 2024

NOTE: '\' line wrapping per RFC 8792

"@method": POST

"@authority": example.com

"@path": /foo

"content-digest": sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX\
+TaPm+AbwAgBWnrIiY11lu7BNNyealdVLVRWEMTHWXvJwew==":

"content-length": 18

"content-type": application/json

"@signature-params”: ("@method" "@authority" "@path" \
"content-digest" "content-length" "content-type")\
;created=1618884473 ;keyid="test-key-rsa-pss"

Figure 1: Non-normative Example Signature Base

Note that the example signature base above does not include the final newline that ends the
displayed example, nor do other example signature bases displayed elsewhere in this
specification.

3. HTTP Message Signatures

An HTTP message signature is a signature over a string generated from a subset of the
components of an HTTP message in addition to metadata about the signature itself. When
successfully verified against an HTTP message, an HTTP message signature provides
cryptographic proof that the message is semantically equivalent to the message for which the
signature was generated, with respect to the subset of message components that was signed.

3.1. Creating a Signature

Creation of an HTTP message signature is a process that takes as its input the signature context
(including the target message) and the requirements for the application. The output is a
signature value and set of signature parameters that can be communicated to the verifier by
adding them to the message.

In order to create a signature, a signer MUST apply the following algorithm:

1. The signer chooses an HTTP signature algorithm and key material for signing from the set of
potential signing algorithms. The set of potential algorithms is determined by the application
and is out of scope for this document. The signer MUST choose key material that is
appropriate for the signature's algorithm and that conforms to any requirements defined by
the algorithm, such as key size or format. The mechanism by which the signer chooses the
algorithm and key material is out of scope for this document.

2. The signer sets the signature's creation time to the current time.

3. If applicable, the signer sets the signature's expiration time property to the time at which the
signature is to expire. The expiration is a hint to the verifier, expressing the time at which
the signer is no longer willing to vouch for the signature. An appropriate expiration length,
and the processing requirements of this parameter, are application specific.

Backman, et al. Standards Track Page 38

RFC 9421 HTTP Message Signatures February 2024

4. The signer creates an ordered set of component identifiers representing the message
components to be covered by the signature and attaches signature metadata parameters to
this set. The serialized value of this set is later used as the value of the Signature-Input field
as described in Section 4.1.

> Once an order of covered components is chosen, the order MUST NOT change for the life of
the signature.

> Each covered component identifier MUST be either (1) an HTTP field (Section 2.1) in the
signature context or (2) a derived component listed in Section 2.2 or in the "HTTP
Signature Derived Component Names" registry.

o Signers of a request SHOULD include some or all of the message control data in the covered
components, such as the @method, @authority, @target-uri, or some combination
thereof.

o Signers SHOULD include the created signature metadata parameter to indicate when the
signature was created.

> The @signature-params derived component identifier MUST NOT be present in the list of
covered component identifiers. The derived component is required to always be the last
line in the signature base, ensuring that a signature always covers its own metadata and
the metadata cannot be substituted.

o Further guidance on what to include in this set and in what order is out of scope for this
document.

5. The signer creates the signature base using these parameters and the signature base creation
algorithm (Section 2.5).

6. The signer uses the HTTP_SIGN primitive function to sign the signature base with the chosen
signing algorithm using the key material chosen by the signer. The HTTP_SIGN primitive and
several concrete applications of signing algorithms are defined in Section 3.3.

7. The byte array output of the signature function is the HTTP message signature output value
to be included in the Signature field as defined in Section 4.2.

For example, given the HTTP message and signature parameters in the example in Section 2.5,
the example signature base is signed with the test-key-rsa-pss key (see Appendix B.1.2) and
the RSASSA-PSS algorithm described in Section 3.3.1, giving the following message signature
output value, encoded in Base64:

NOTE: '\' line wrapping per RFC 8792

HIbjHC5rS@BYaa9v4QfD4193TORW7u9edguPhOAW3dMqOWImr1IFrCGUDih47vAxi4L2\
YRZ3XMJcTuOKk /JBZmZ+wctadnKIgBkKq@rM9hs3CQyxXGxHLMCy8ugK4880+9jrptQ\
+xFPHK7a9sRL1IXNaagCNN3ZxJsYapF j+JXbmaI5rtAdSfSvzPuBCh+ARHBmWuNo1Uz\
VVdHXr18ePL4cccqlazIJdC4QE]jrF+Sn4IxBQzTZsL9y9TP5FsZYzHvDgbInkTNigBc\
E9cKOYNFCn4D/WM7F6TNuZ09EgtzepLWejTymlHzK7aXq6Am6sfOrpIC49yXjj3ae6H\
RalVc/g==

Figure 2: Non-normative Example Signature Value

Backman, et al. Standards Track Page 39

RFC 9421 HTTP Message Signatures February 2024

Note that the RSA-PSS algorithm in use here is non-deterministic, meaning that a different
signature value will be created every time the algorithm is run. The signature value provided
here can be validated against the given keys, but newly generated signature values are not
expected to match the example. See Section 7.3.5.

3.2. Verifying a Signature

Verification of an HTTP message signature is a process that takes as its input the signature
context (including the target message, particularly its Signature and Signature-Input fields) and
the requirements for the application. The output of the verification is either a positive
verification or an error.

In order to verify a signature, a verifier MUST apply the following algorithm:

1. Parse the Signature and Signature-Input fields as described in Sections 4.1 and 4.2, and
extract the signatures to be verified and their labels.

1.1. If there is more than one signature value present, determine which signature should
be processed for this message based on the policy and configuration of the verifier. If
an applicable signature is not found, produce an error.

1.2. If the chosen Signature field value does not have a corresponding Signature-Input field
value (i.e., one with the same label), produce an error.

2. Parse the values of the chosen Signature-Input field as a parameterized Inner List to get the
ordered list of covered components and the signature parameters for the signature to be
verified.

3. Parse the value of the corresponding Signature field to get the byte array value of the
signature to be verified.

4. Examine the signature parameters to confirm that the signature meets the requirements
described in this document, as well as any additional requirements defined by the
application such as which message components are required to be covered by the signature
(Section 3.2.1).

5. Determine the verification key material for this signature. If the key material is known
through external means such as static configuration or external protocol negotiation, the
verifier will use the applicable technique to obtain the key material from this external
knowledge. If the key is identified in the signature parameters, the verifier will dereference
the key identifier to appropriate key material to use with the signature. The verifier has to
determine the trustworthiness of the key material for the context in which the signature is
presented. If a key is identified that the verifier does not know or trust for this request or
that does not match something preconfigured, the verification MUST fail.

6. Determine the algorithm to apply for verification:
6.1. Start with the set of allowable algorithms known to the application. If any of the
following steps select an algorithm that is not in this set, the signature validation fails.

6.2. If the algorithm is known through external means such as static configuration or
external protocol negotiation, the verifier will use that algorithm.

Backman, et al. Standards Track Page 40

RFC 9421 HTTP Message Signatures February 2024

6.3. If the algorithm can be determined from the keying material, such as through an
algorithm field on the key value itself, the verifier will use that algorithm.

6.4. If the algorithm is explicitly stated in the signature parameters using a value from the
"HTTP Signature Algorithms" registry, the verifier will use the referenced algorithm.

6.5. Ifthe algorithm is specified in more than one location (e.g., a combination of static
configuration, the algorithm signature parameter, and the key material itself), the
resolved algorithms MUST be the same. If the algorithms are not the same, the verifier
MUST fail the verification.

7. Use the received HTTP message and the parsed signature parameters to recreate the
signature base, using the algorithm defined in Section 2.5. The value of the @signature-
params input is the value of the Signature-Input field for this signature serialized according
to the rules described in Section 2.3. Note that this does not include the signature's label from
the Signature-Input field.

8. If the key material is appropriate for the algorithm, apply the appropriate HTTP_VERIFY
cryptographic verification algorithm to the signature, recalculated signature base, key
material, and signature value. The HTTP_VERIFY primitive and several concrete algorithms
are defined in Section 3.3.

9. The results of the verification algorithm function are the final results of the cryptographic
verification function.

If any of the above steps fail or produce an error, the signature validation fails.

For example, verifying the signature with the label sig1 of the following message with the test-
key-rsa-pss key (see Appendix B.1.2) and the RSASSA-PSS algorithm described in Section 3.3.1:

NOTE: '\' line wrapping per RFC 8792

POST /foo?param=Value&Pet=dog HTTP/1.1

Host: example.com

Date: Tue, 20 Apr 2021 02:07:55 GMT

Content-Type: application/json

Content-Digest: sha-512=:WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+T\
aPm+AbwAgBWnrIiY11lu7BNNyealdVLVRWEMTHWXvJwew==:

Content-Length: 18

Signature-Input: sigl=("@method" "@authority" "@path" \
"content-digest" "content-length" "content-type")\
;created=1618884473 ;keyid="test-key-rsa-pss"

Signature: sig1=:HIbjHC5rSOBYaa9v4QfD4193TORW7u9edguPhO@AW3dMgOWImrl\
FrCGUDih47vAxi4L2YRZ3XMJcTuOKk/JOZmZ+wctadnKIgBkKgOrMohs3CQyxXGxH\
LMCy8ugK4880+97jrptQ+xFPHK7a9sRL1IXNaagCNN3ZxJsYapFj+JXbmaI5rtAdSf\
SvzPuBCh+ARHBmWuNo1UzVVdHXr18ePL4cccqlazIJdC4QEjrF+Sn4IxBQzTZsL9y\
9TP5FsZYzHvDgbInNkTNigBcE9cKOYNFCn4D/WM7F6TNuZ09EgtzepLWejTymlHzK7\
aXq6Am6sfOrpIC49yXjj3ae6HRalVc/g==:

{"hello": "world"}

Backman, et al. Standards Track Page 41

RFC 9421 HTTP Message Signatures February 2024

With the additional requirements that at least the method, authority, path, content-digest,
content-length, and content-type entries be signed, and that the signature creation timestamp be
recent enough at the time of verification, the verification passes.

3.2.1. Enforcing Application Requirements

The verification requirements specified in this document are intended as a baseline set of
restrictions that are generally applicable to all use cases. Applications using HTTP message
signatures MAY impose requirements above and beyond those specified by this document, as
appropriate for their use case.

Some non-normative examples of additional requirements an application might define are:

* Requiring a specific set of header fields to be signed (e.g., Authorization, Content-Digest).
* Enforcing a maximum signature age from the time of the created timestamp.

* Rejecting signatures past the expiration time in the expires timestamp. Note that the
expiration time is a hint from the signer and that a verifier can always reject a signature
ahead of its expiration time.

* Prohibiting certain signature metadata parameters, such as runtime algorithm signaling
with the alg parameter when the algorithm is determined from the key information.

* Ensuring successful dereferencing of the keyid parameter to valid and appropriate key
material.

* Prohibiting the use of certain algorithms or mandating the use of a specific algorithm.

* Requiring keys to be of a certain size (e.g., 2048 bits vs. 1024 hits).

* Enforcing uniqueness of the nonce parameter.

* Requiring an application-specific value for the tag parameter.

Application-specific requirements are expected and encouraged. When an application defines
additional requirements, it MUST enforce them during the signature verification process, and
signature verification MUST fail if the signature does not conform to the application's
requirements.

Applications MUST enforce the requirements defined in this document. Regardless of use case,
applications MUST NOT accept signatures that do not conform to these requirements.

3.3. Signature Algorithms

An HTTP message signature MUST use a cryptographic digital signature or MAC method that is
appropriate for the key material, environment, and needs of the signer and verifier. This
specification does not strictly limit the available signature algorithms, and any signature
algorithm that meets these basic requirements MAY be used by an application of HTTP message
signatures.

For each signing method, HTTP_SIGN takes as its input the signature base defined in Section 2.5 as
a byte array (M) and the signing key material (Ks), and outputs the resultant signature as a byte
array (S):

Backman, et al. Standards Track Page 42

RFC 9421 HTTP Message Signatures February 2024

HTTP_SIGN (M, Ks) -> S

For each verification method, HTTP_VERIFY takes as its input the regenerated signature base
defined in Section 2.5 as a byte array (M), the verification key material (Kv), and the presented
signature to be verified as a byte array (S), and outputs the verification result (V) as a Boolean:

HTTP_VERIFY (M, Kv, S) ->V

The following sections contain several common signature algorithms and demonstrate how these
cryptographic primitives map to the HTTP_SIGN and HTTP_VERIFY definitions above. Which
method to use can be communicated through the explicit algorithm (alg) signature parameter
(Section 2.3), by reference to the key material, or through mutual agreement between the signer
and verifier. Signature algorithms selected using the alg parameter MUST use values from the
"HTTP Signature Algorithms" registry (Section 6.2).

3.3.1. RSASSA-PSS Using SHA-512

To sign using this algorithm, the signer applies the RSASSA-PSS-SIGN (K, M) function defined in
[RFC8017] with the signer's private signing key (K) and the signature base (M) (Section 2.5). The
mask generation function is MGF1 as specified in [RFC8017] with a hash function of SHA-512
[RFC6234]. The salt length (sLen) is 64 bytes. The hash function (Hash) SHA-512 [RFC6234] is
applied to the signature base to create the digest content to which the digital signature is applied.
The resulting signed content byte array (S) is the HTTP message signature output used in Section
3.1.

To verify using this algorithm, the verifier applies the RSASSA-PSS-VERIFY ((n, e), M, S)
function [RFC8017] using the public key portion of the verification key material (n, e) and the
signature base (M) recreated as described in Section 3.2. The mask generation function is MGF1 as
specified in [RFC8017] with a hash function of SHA-512 [RFC6234]. The salt length (sLen) is 64
bytes. The hash function (Hash) SHA-512 [RFC6234] is applied to the signature base to create the
digest content to which the verification function is applied. The verifier extracts the HTTP
message signature to be verified (S) as described in Section 3.2. The results of the verification
function indicate whether the signature presented is valid.

Note that the output of the RSASSA-PSS algorithm is non-deterministic; therefore, it is not correct
to recalculate a new signature on the signature base and compare the results to an existing
signature. Instead, the verification algorithm defined here needs to be used. See Section 7.3.5.

The use of this algorithm can be indicated at runtime using the rsa-pss-sha512 value for the
alg signature parameter.

Backman, et al. Standards Track Page 43

RFC 9421 HTTP Message Signatures February 2024

3.3.2. RSASSA-PKCS1-v1_5 Using SHA-256

To sign using this algorithm, the signer applies the RSASSA-PKCS1-V1_5-SIGN (K, M) function
defined in [RFC8017] with the signer's private signing key (K) and the signature base (M) (Section
2.5). The hash SHA-256 [RFC6234] is applied to the signature base to create the digest content to
which the digital signature is applied. The resulting signed content byte array (S) is the HTTP
message signature output used in Section 3.1.

To verify using this algorithm, the verifier applies the RSASSA-PKCS1-V1_5-VERIFY ((n, e), M,
S) function [RFC8017] using the public key portion of the verification key material (n, e) and the
signature base (M) recreated as described in Section 3.2. The hash function SHA-256 [RFC6234] is
applied to the signature base to create the digest content to which the verification function is
applied. The verifier extracts the HTTP message signature to be verified (S) as described in
Section 3.2. The results of the verification function indicate whether the signature presented is
valid.

The use of this algorithm can be indicated at runtime using the rsa-v1_5-sha256 value for the
alg signature parameter.

3.3.3. HMAC Using SHA-256

To sign and verify using this algorithm, the signer applies the HMAC function [RFC2104] with the
shared signing key (K) and the signature base (text) (Section 2.5). The hash function SHA-256
[RFC6234] is applied to the signature base to create the digest content to which the HMAC is
applied, giving the signature result.

For signing, the resulting value is the HTTP message signature output used in Section 3.1.

For verification, the verifier extracts the HTTP message signature to be verified (S) as described
in Section 3.2. The output of the HMAC function is compared bytewise to the value of the HTTP
message signature, and the results of the comparison determine the validity of the signature
presented.

The use of this algorithm can be indicated at runtime using the hmac-sha256 value for the alg
signature parameter.

3.3.4. ECDSA Using Curve P-256 DSS and SHA-256

To sign using this algorithm, the signer applies the ECDSA signature algorithm defined in
[FIPS186-5] using curve P-256 with the signer's private signing key and the signature base
(Section 2.5). The hash SHA-256 [RFC6234] is applied to the signature base to create the digest
content to which the digital signature is applied (M). The signature algorithm returns two integer
values: r and s. These are both encoded as big-endian unsigned integers, zero-padded to 32
octets each. These encoded values are concatenated into a single 64-octet array consisting of the
encoded value of r followed by the encoded value of s. The resulting concatenation of (r, s)isa
byte array of the HTTP message signature output used in Section 3.1.

Backman, et al. Standards Track Page 44

RFC 9421 HTTP Message Signatures February 2024

To verify using this algorithm, the verifier applies the ECDSA signature algorithm defined in
[FIPS186-5] using the public key portion of the verification key material and the signature base
recreated as described in Section 3.2. The hash function SHA-256 [RFC6234] is applied to the
signature base to create the digest content to which the signature verification function is applied
(M). The verifier extracts the HTTP message signature to be verified (S) as described in Section 3.2.
This v